Sistem Cerdas Deteksi Parkir Kendaraan dengan Line Detection dan YOLOv8 di Wisma Dosen

DOI: https://doi.org/10.33650/coreai.v6i2.13262

Authors (s)


(1) * Ahmad Khairi   (Universitas Nurul Jadid)  
        Indonesia
(2)  Siti Romlah   (Universitas Nurul Jadid)  
        Indonesia
(3)  Ayu Lestari   (Universitas Nurul Jadid)  
        Indonesia
(4)  Fitri Zamzamia Ismail   (Universitas Nurul Jadid)  
        Indonesia
(*) Corresponding Author

Abstract


Penelitian ini berangkat dari kebutuhan informasi okupansi parkir yang andal dan berbiaya implementasi rendah di lingkungan kampus, di mana sistem berbasis kamera kerap terkendala pencahayaan, sudut pandang, dan occlusion, karenanya, tujuan penelitian ini adalah mengembangkan serta mengevaluasi sistem deteksi okupansi per petak parkir di Wisma Dosen Universitas Nurul Jadid dengan memadukan line detection untuk pemetaan slot dan YOLOv8 sebagai pendeteksi kendaraan, sehingga alur metode dan hasil saling terhubung secara operasional. Dataset berupa rekaman CCTV 720p/25 fps dikumpulkan pada enam tanggal di Juli 2025 (pagi–siang–sore), preprocessing meliputi pemangkasan segmen relevan, normalisasi resolusi, dan penetapan ROI; marka diekstraksi melalui tepi Hough untuk membentuk poligon slot, YOLOv8s (bobot COCO) melakukan inferensi per frame; status slot ditetapkan dari irisan bounding box–poligon berbasis intersection-over-area dan posisi pusat massa, dengan kinerja diukur menggunakan akurasi terhadap ground-truth beranotasi. Hasilnya menunjukkan akurasi puncak 0,87 pada siang hari (6 Juli 2024) dan konsisten >0,50 pada seluruh skenario uji, dengan kecenderungan akurasi lebih baik pada siang dibanding pagi/sore; visualisasi real time menampilkan bounding box kendaraan dan status slot yang siap untuk pemantauan operasional. Disimpulkan bahwa integrasi computer vision berbasis line detection dan YOLOv8 efektif sebagai prototipe smart parking berbasis CCTV, dengan peluang peningkatan melalui perluasan data multi-hari/lokasi, fine-tuning domain lokal, penguatan image enhancement pada low-light, dan integrasi pelacakan objek untuk temporal smoothing.



Keywords

Computer vision; Line detection; Parking occupancy; Smart parking; YOLOv8



Full Text: DOWNLOAD PDF



References


L. F. Luque-Vega, D. A. Michel-Torres, E. Lopez-Neri, M. A. Carlos-Mancilla, and L. E. González-Jiménez, “Iot smart parking system based on the visual-aided smart vehicle presence sensor: SPIN-V,” Sensors (Switzerland), vol. 20, no. 5, Mar. 2020, doi: 10.3390/s20051476.

A. Jamshed, B. Mallick, and R. K. Bharti, “An Efficient Pattern Mining Convolution Neural Network (CNN) Algorithm With Grey Wolf Optimization (GWO),” Arxiv - Computer Vision and Pattern Recognition, 2022, doi: https://doi.org/10.48550/arXiv.2204.04704.

S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for image-based plant disease detection,” Front Plant Sci, vol. 7, no. September, Sep. 2016, doi: 10.3389/FPLS.2016.01419,.

H. F. Pardede, E. Suryawati, D. Krisnandi, R. S. Yuwana, and V. Zilvan, “Machine Learning Based Plant Diseases Detection: A Review,” Proceeding - 2020 International Conference on Radar, Antenna, Microwave, Electronics and Telecommunications, ICRAMET 2020, pp. 212–217, Nov. 2020, doi: 10.1109/ICRAMET51080.2020.9298619.

R. Muslim, Z. Zaeniah, A. Akbar, B. Imran, and Z. Zaenudin, “Disease Detection of Rice and Chili Based on Image Classification Using Convolutional Neural Network Android-Based,” Jurnal Pilar Nusa Mandiri, vol. 19, no. 2, pp. 85–96, Sep. 2023, doi: 10.33480/PILAR.V19I2.4669.

I. Masmoudi and A. Wali, “Vision Based Approach for Adaptive Parking Lots Occupancy Estimation,” Pattern Recognition and Image Analysis, vol. 29, no. 3, pp. 515–522, Jul. 2019, doi: 10.1134/S1054661819030143.

G. S. Wong, K. O. M. Goh, C. Tee, and A. Q. Aznul, “Review of Vision-Based Deep Learning Parking Slot Detection on Surround View Images,” Aug. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/s23156869.

R. Ke, Y. Zhuang, Z. Pu, and Y. Wang, “A Smart, Efficient, and Reliable Parking Surveillance System with Edge Artificial Intelligence on IoT Devices,” Transactions on Intelligent Transportation Systems, pp. 1–13, 2020.

D. Acharya, W. Yan, and K. Khoshelham, “Real-time image-based parking occupancy detection using deep learning,” CEUR Workshop Proc, vol. 2087, pp. 33–40, 2018.

A. Katiyar and . S., “Parking Occupancy Detection using Computer Vision Techniques,” International Journal of Innovative Science and Research Technology (IJISRT), pp. 240–261, Apr. 2024, doi: 10.38124/ijisrt/ijisrt24apr234.

A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” Apr. 2020, [Online]. Available: http://arxiv.org/abs/2004.10934

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” May 2016, [Online]. Available: http://arxiv.org/abs/1506.02640


Dimensions, PlumX, and Google Scholar Metrics

10.33650/coreai.v6i2.13262


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Ahmad Khairi, Siti Romlah, Ayu Lestari, Fitri Zamzamia Ismail

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


Creative Commons License
 
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

COREAI: Jurnal Kecerdasan Buatan, Komputasi dan Teknologi Informasi

Published by Technic Faculty of Nurul Jadid University, Probolinggo, East Java, Indonesia.