Pengembangan Aplikasi Mobile Berbasis IoT untuk Monitoring Kualitas Tanah dan Kebutuhan Nutrisi Tanaman Cabe

DOI: https://doi.org/10.33650/coreai.v6i2.13293

Authors (s)


(1) * Syaiful Syaiful   (Universitas Nurul Jadid)  
        Indonesia
(*) Corresponding Author

Abstract


Kualitas tanah dan ketersediaan nutrisi merupakan faktor kritis dalam menentukan produktivitas tanaman Cabai Besar (Capsicum annuum). Keterbatasan data real-time sering menghambat petani dalam pengambilan keputusan pemupukan yang tepat dan efisien. Penelitian terapan ini bertujuan untuk mengatasi kesenjangan informasi tersebut dengan mengembangkan Sistem Monitoring Real-Time berbasis Internet of Things (IoT) yang terintegrasi dengan Aplikasi Mobile. Sistem ini dirancang menggunakan pendekatan rekayasa sistem (engineering experiment), yang melibatkan pengembangan perangkat IoT untuk akuisisi data parameter tanah kunci, yaitu kelembaban, pH, dan suhu. Kontribusi utama penelitian ini terletak pada integrasi data akurat dengan mesin rekomendasi di aplikasi mobile yang secara spesifik menyajikan Rekomendasi Kebutuhan Nutrisi yang disesuaikan untuk tanaman Cabai Besar berdasarkan kondisi tanah saat itu. Hasil pengujian menunjukkan bahwa sistem IoT yang dikembangkan mampu menyajikan data kualitas tanah secara real-time dengan akurasi rata-rata di atas 90% jika dibandingkan dengan pengukuran manual. Dengan adanya aplikasi ini, petani Cabai Besar memperoleh alat bantu pendukung keputusan (Decision Support System) yang efisien dan mobile, sehingga memungkinkan manajemen lahan pertanian yang lebih presisi dan berdampak langsung pada potensi peningkatan hasil panen.


Keywords

Internet of Things (IoT); Aplikasi Mobile; Kualitas Tanah; Rekomendasi Nutrisi; Tanaman Cabai Besar;



Full Text: DOWNLOAD PDF



References


. V. Kumar, K. V. Sharma, N. Kedam, A. Patel, T. R. Kate, and U. Rathnayake, “A comprehensive review on smart and sustainable agriculture using IoT technologies,” Smart Agricultural Technology, 2024.

. K. Khanal, G. Ojha, S. Chataut, and U. K. Ghimire, “IoT-based real-time soil health monitoring system for precision agriculture,” International Research Journal of Engineering and Technology, vol. 11, no. 7, 2024.

. N. S. Abu, W. M. B. W. Daud, C. H. Ong, et al., “Internet of Things applications in precision agriculture: A review,” Journal of Robotics and Control, vol. 3, no. 3, pp. 338–347, 2022.

. S. N. Kumar, K. Suriyan, A. T. Jacob, A. Varghese, and E. Francis, “Smart farming for a sustainable future: Implementing IoT-based systems in precision agriculture,” Bulletin of the National Research Centre, vol. 49, 71, 2025.

. S. Mansoor, S. Iqbal, S. M. Popescu, S. L. Kim, Y. S. Chung, and J.-H. Baek, “Integration of smart sensors and IoT in precision agriculture: Trends, challenges and future prospectives,” Frontiers in Plant Science, vol. 16, 1587869, 2025.

. H. Shahab, M. Naeem, et al., “IoT-driven smart agricultural technology for real-time soil and crop optimization,” Smart Agricultural Technology, vol. 10, p. 100847, 2025.

. A. Soussi, et al., “Smart sensors and smart data for precision agriculture,” Sensors, vol. 24, no. 8, 2647, 2024.

. M. K. Senapaty, A. Ray, and N. Padhy, “IoT-enabled soil nutrient analysis and crop recommendation model for precision agriculture,” Computers, vol. 12, no. 3, 61, 2023.

. A. W. Hakis, A. L. Arda, and A. Jalil, “IoT-based soil nutrient monitoring and control using fuzzy logic and multi-modal sensor integration,” Journal of Applied Informatics and Computing, vol. 9, no. 5, pp. 2736–2745, 2025.

. M. R. Islam, K. Oliullah, M. M. Kabir, M. Alom, and M. F. Mridha, “Machine learning enabled IoT system for soil nutrients monitoring and crop recommendation,” Journal of Agriculture and Food Research, vol. 14, p. 100880, 2023.

. L. Gottemukkala, S. T. R. Jajala, A. Thalari, S. R. Vootkuri, V. Kumar, and G. Naidu, “Sustainable crop recommendation system using soil NPK sensor,” E3S Web of Conferences, vol. 430, 01100, 2023.

. R. E. Putri, I. P. Maharani, and I. Putri, “Real-time monitoring system for temperature, humidity, and pH for composting process,” Jurnal Teknik Pertanian Lampung, vol. 14, no. 2, pp. 380–390, 2025.

. H. Hartanto, H. Hasan, T. Muzakkir, M. Y. Tharam, M. Ilyas, and E. Radwitya, “Rancang bangun sistem monitoring tanaman lidah buaya menggunakan ESP32 berbasis IoT,” Electrical Network Systems and Sources, vol. 3, no. 1, pp. 23–31, 2024.

. M. Muthmainnah, “Monitoring soil temperature and humidity in an IoT-based greenhouse to improve plant management,” Mechatronics: Journal of Mechanical, Electrical, and Industrial Engineering, 2024.

. I. U. Nadhori, et al., “IoT-based fertilizer recommendation system,” in Proc. AIP Conf. Proc., 2024.

. L. Birla, S. B. Lal, and K. K. Chaturvedi, “Soil nutrient based mobile app for crop-wise fertilizer recommendation: A ‘SoilNutro’ application,” International Journal of Plant & Soil Science, vol. 36, no. 5, pp. 95–105, 2024.

. W. A. N. W. Abdullah and A. N. A. Rahim, “IoT Agri-Care Advisor mobile application for monitoring paddy plant health and delivering smart farmer advisory toward sustainable agriculture,” Scientific and Technical Journal, 2025.

. N. Patel, R. Sharma, and A. Verma, “Decision support systems in precision agriculture: Integrating IoT data for sustainable crop management,” IEEE Internet of Things Journal, vol. 11, no. 3, pp. 210–223, 2024.

. D. Perdana, et al., “Development of an IoT-based device for real-time NPK fertilization recommendations in soybean,” Agricultural Research Journal, 2025.

. M. K. Sharma, et al., “FertiCal-P: An Android-based decision support system (DSS) determines the NPK fertilizer recommendation by assessing pH and macronutrient of the soil,” Current Agriculture Research Journal, 2025.


Dimensions, PlumX, and Google Scholar Metrics

10.33650/coreai.v6i2.13293


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Syaiful Syaiful

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


Creative Commons License
 
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

COREAI: Jurnal Kecerdasan Buatan, Komputasi dan Teknologi Informasi

Published by Technic Faculty of Nurul Jadid University, Probolinggo, East Java, Indonesia.