

Vol. 03 No. 01 (2025) Available online at https://ejournal.unuja.ac.id/index.php/icesh

MODERN PARADIGM: EMPIRISM, RATIONALISM, AND POSITIVISM

Muh. Yusril Maulana¹, Nurul Huda²

myusrilmaulana3@gmail.com¹, enha300681@gmail.com² ^{1,2} Universitas Nurul Jadid, East Java, Indonesia

Abstract:

Modern paradigms in science are the result of a long evolution of philosophical thought rooted in the classical debate between empiricism, rationalism, and positivism. This article examines these three paradigms in depth by reviewing their epistemological foundations, key figures, and their implications for the development of modern science. Through a literature review approach, this article explores the contributions of philosophers such as John Locke, René Descartes, David Hume, Auguste Comte, and Karl Popper. The study shows that empiricism emphasizes sensory experience as the primary source of knowledge; rationalism relies on reason as the basis of universal truth; while positivism places empirical verification and the scientific method as the measure of scientific truth. These three paradigms complement each other in forming the foundation of modern scientific methodology. The integration of rationality and empirical experience results in a more comprehensive scientific approach. Thus, the modern paradigm is no longer monolithic, but rather open and dynamic to epistemological plurality.

Keywords: Empiricism, Rationalism, Positivism, Modern Paradigm, Philosophy Of Science

INTRODUCTION

The history of the development of science is inseparable from the evolution of philosophical thought on the nature of knowledge (epistemology). From the time of Ancient Greece to the modern era, philosophers have sought to answer the fundamental question: How do humans acquire true knowledge? This question gave rise to various schools of thought, the most prominent of which in the modern tradition are empiricism, rationalism, and positivism (Chalmers, 2013).

In the early modern era, the scientific revolution of the 17th century marked a significant milestone in the paradigm shift. Figures such as Galileo Galilei, Isaac Newton, and Francis Bacon introduced observation and experimentation as the basis for scientific knowledge. This thinking challenged the dominance of scholastic rationalism, which previously emphasized logical deduction from metaphysical principles. This shift marked the birth of modern science, grounded in empirical experience and the systematic testing of hypotheses (Hacking, 1983).

However, the debate between rationalism and empiricism has never been truly

resolved. These two paradigms formed the foundation that was later synthesized into positivism, particularly by Auguste Comte in the 19th century, who sought to establish science as the only valid path to understanding reality (Comte, 1975). Subsequently, positivism influenced various disciplines, from sociology to psychology, and became the basis for the birth of the modern scientific method as we know it today.

This article aims to systematically examine and compare these three major paradigms and examine their relevance in the context of contemporary science. The main questions to be answered are: how do empiricism, rationalism, and positivism relate to the formation of the modern paradigm, and to what extent are they still relevant in contemporary scientific research?

RESEARCH METHODS

This research employed a library research method, which involved analyzing various written sources related to the topics of empiricism, rationalism, and positivism. This approach was chosen because the topics studied were conceptual and philosophical, rather than quantitatively empirical. The research steps included identifying primary and secondary sources, such as John Locke's classic works An Essay Concerning Human Understanding, René Descartes' Meditations on First Philosophy, David Hume's An Inquiry Concerning Human Understanding, and Auguste Comte's Cours de philosophie positive.

Next, a classification of theories and perspectives was conducted to map the epistemological position of each paradigm. This was followed by a comparative analysis to compare the principles, methods, and implications of the three paradigms for the development of modern science. The final stage involved synthesizing the study results, aiming to conclude how the three paradigms interrelate and contribute to the development of modern scientific methodology. Thus, this research method yields a descriptive-analytical approach that not only describes theories but also assesses the strengths, weaknesses, and relevance of empiricism, rationalism, and positivism in the context of contemporary science.

RESULTS AND DISCUSSION

Empiricism: Knowledge Comes from Experience

Empiricism asserts that all human knowledge is derived from sensory experience. Key figures such as John Locke, George Berkeley, and David Hume are pillars of this tradition. Locke (1690/1997) proposed that the human mind was initially a tabula rasa, filled with sensations from experience. For Locke, there are no innate ideas; all ideas are formed through reflection on experience.

David Hume later expanded empiricism with a skeptical approach. He rejected the idea of causality as something logically certain, but rather as mere habits that emerge from repeated experience (Hume, 1748/1978). Thus, human knowledge is probabilistic, not absolute. The strength of empiricism lies in its closeness to the modern scientific method: observation, experimentation, and data testing. However, its weakness lies in its inability to explain abstract concepts that are not directly derived from experience, such as mathematics, ethics, or universal concepts (Audi, 2011).

Rationalism: Knowledge from Reason and Innate Ideas

Rationalism asserts that reason is the primary source of knowledge. Its central figures are René Descartes, Baruch Spinoza, and Gottfried Wilhelm Leibniz. Descartes (1641/1996) began his philosophy with methodical doubt and

arrived at the fundamental conclusion: Cogito ergo sum ("I think, therefore I am"). From this, he constructed a deductive system of knowledge based on clear and distinct ideas.

Spinoza developed the idea that God and the universe are of one and the same substance, and that everything can be explained logically. Leibniz, on the other hand, introduced the concept of monads as fundamental entities of reality that operate rationally and orderly (Leibniz, 1714/1989).

Rationalism provides a strong foundation for mathematics and logic, as both rely on deduction and a priori principles. However, this approach has been criticized for being abstract and far removed from empirical reality (Russell, 1945).

Positivism: Science as the Only Path to Knowledge

Positivism is a synthesis and evolution of the two previous paradigms. Introduced by Auguste Comte in the 19th century, positivism rejects metaphysical speculation and asserts that true knowledge can only be obtained through systematic empirical observation and scientific verification (Comte, 1975). Comte classified human intellectual development into three stages: theological, metaphysical, and positive. The positive stage is considered the most advanced because it focuses on observable facts and causal relationships in nature.

In its modern version, positivism was developed into logical positivism by the Vienna Circle, including Moritz Schlick, Rudolf Carnap, and A. J. Ayer. They argued that scientific statements must be empirically verifiable to be meaningful (Ayer, 1952). Karl Popper later criticized the concept of verification and replaced it with the principle of falsification, which states that scientific theories must be testable and potentially refutable (Popper, 2002).

Positivism provides a strong methodological framework for modern science, particularly in terms of objectivity and systematization of research. However, this approach is often criticized for overemphasizing quantitative aspects and ignoring the subjective or social dimensions of science (Kuhn, 1962).

Paradigm Integration in Modern Science

In the development of contemporary science, the boundaries between empiricism, rationalism, and positivism are increasingly blurred. Scientists now recognize that scientific research cannot rely solely on empirical data without (rational) theory, or vice versa. The scientific process is a combination of theoretical deduction and empirical induction (Chalmers, 2013).

For example, in theoretical physics, many theories emerge from rational reasoning before being empirically proven, such as Einstein's theory of relativity or quantum mechanics. Conversely, in the social sciences, qualitative research often combines empirical observation with conceptual analysis to explain human phenomena.

Thus, the modern paradigm is moving toward epistemological pluralism, where various approaches are used in a complementary manner. This integration aligns with Thomas Kuhn's (1962) view of paradigm shifts, stating that science develops through changes in frameworks of thought, not simply through the accumulation of facts.

CONCLUSION

Empiricism, rationalism, and positivism are the three main paradigms that form the basis of modern epistemology. Empiricism emphasizes experience

as a source of knowledge, rationalism emphasizes the role of reason and deduction, while positivism combines the two within the framework of a verified scientific method.

All three have contributed significantly to the advancement of science: empiricism provides the basis for observation; rationalism provides theoretical structure; and positivism provides methodological standards. However, each paradigm also has limitations: empiricism relies too heavily on sensory experience, rationalism too abstract, and positivism too mechanistic.

In the context of contemporary science, integration between the three is essential. Modern paradigms are no longer dogmatic, but rather reflective, pluralistic, and critical of the basic assumptions of knowledge. The synergy between empirical experience, rationality, and scientific verification is key to the development of a more holistic and humane science.

REFERENCES

- Audi, R. (2011). Epistemology: A Contemporary Introduction to the Theory of Knowledge (3rd ed.). Routledge.
- Ayer, A. J. (1952). Language, Truth and Logic (2nd ed.). Gollancz.
- Chalmers, A. F. (2013). What Is This Thing Called Science? (4th ed.). Open University Press.
- Chalmers, A. F. (2013). What Is This Thing Called Science? (4th ed.). Open University Press.
- Comte, A. (1975). Cours de philosophie positive. Paris: Hermann. (Original work published in 1830).
- Comte, A. (1975). Cours de philosophie positive. Paris: Hermann. (Original work published in 1830).
- Descartes, R. (1996). Meditations on First Philosophy. Cambridge University Press. (Original work 1641).
- Hacking, I. (1983). Representing and Intervening: Introductory Topics in the Philosophy of Natural Science. Cambridge University Press.
- Huda, N., & Faizin, F. (2024). Melacak Akar Kekerasan Di Padepokan Dimas Kanjeng Taat Pribadi Dalam Prespektif Triangulasi Hasrat Rene Girard. *Innovative: Journal Of Social Science Research*, 4(1), 13124-13139.
- Huda, N., Ibed, Z., Hasan, A. F., Basari, S. Z., Matin, R. D., & Sandi, A. (2025). Peningkatan Taḥsîn al-Qur'ân melalui Hafalan Kitab Tuhfat Al-Athfal di TPQ. Assalafiyah, Darul Furqon, dan Himmatul Qur'an Probolinggo. *GUYUB: Journal of Community Engagement*, 6(1), 266-289.
- Hume, D. (1978). An Inquiry Concerning Human Understanding. Oxford University Press. (Original work 1748).
- Kuhn, T. S. (1962). The Structure of Scientific Revolutions. University of Chicago Press.
- Kuhn, T. S. (1962). The Structure of Scientific Revolutions. University of Chicago Press.
- Leibniz, G. W. (1989). Philosophical Essays (R. Ariew & D. Garber, Eds.). Hackett Publishing. (Original work 1714).
- Locke, J. (1997). An Essay Concerning Human Understanding. Penguin Classics. (Original work 1690).
- Nisa, K. (2024, January). Implementing Rebt at School: The Impact Academic

Achievement and Emotional Well-Being. In *Proceeding of International Conference on Education, Society and Humanity* (Vol. 2, No. 1, pp. 769-778).

Popper, K. (2002). The Logic of Scientific Discovery. Routledge.

Russell, B. (1945). A History of Western Philosophy. Simon & Schuster.

Sofia, S., Sahidah, A., & Sain, Z. H. (2024, December). Resilient Communities: Turning Disaster Into Blessing From Environmental Lessons. In *Proceeding Of International Conference On Education, Society And Humanity* (Vol. 2, No. 2, pp. 951-955).