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 Protecting the privacy of medical data while enabling sophisticated data 

analysis is a critical challenge in modern healthcare. Fully Homomorphic 

Encryption (FHE) emerges as a powerful solution, enabling computations to 

be performed directly on encrypted data without exposing sensitive 
information. This study delves into the use of FHE for neural network 

inference in medical applications, investigating its role in safeguarding patient 

confidentiality while ensuring computational accuracy and efficiency. 

Experimental findings confirm the practicality of using FHE for medical data 
classification, demonstrating that data security can be preserved without 

significant loss of performance. Furthermore, the research explores the 

balance between computational overhead and model precision, shedding light 

on the complexities of deploying FHE in real-world healthcare AI systems. 
By emphasizing the significance of privacy-preserving machine learning, this 

work contributes to the development of secure, ethical, and effective AI-

driven medical solutions. 
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1. INTRODUCTION 

With the rapid advancement of medical technology, medical analysis has become vital in modern 

healthcare. Through methods like computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, 

and pathology, clinicians can diagnose diseases more accurately, assess treatment effectiveness, and even 

predict potential health risks [1]. Artificial intelligence (AI) and deep learning (DL) have shown significant 

potential in medical image analysis, driving advancements in tumor detection, organ segmentation, pathology, 

and more [2]. These developments not only speed up data processing but also ease the workload of healthcare 

professionals, helping to overcome the shortage of specialized medical personnel. 

Medical data is highly sensitive and requires robust protection to ensure patient privacy [3]. 

Unauthorized access to data during transmission, storage, or analysis can result in severe privacy breaches or 

identity theft. With the growing exchange of medical data, particularly in cross-institutional collaborations and 

AI model training, these risks have become increasingly critical. Conventional encryption techniques safeguard 

data while stored and transmitted but are inadequate when computations are required. Fully Homomorphic 

Encryption (FHE) overcomes this limitation by allowing direct computations on encrypted data. This capability 

is particularly valuable in the context of neural networks, where large-scale data analysis is necessary for 

predictive modeling, diagnostics, and personalized medicine. 

This article focuses on the integration of FHE with neural network inference in the medical domain, 

aiming to optimize the efficiency of encrypted computations while maintaining high model accuracy. Unlike 

previous studies that primarily explored the feasibility of FHE for basic arithmetic operations in neural 

networks, our research emphasizes optimizing inference performance to make privacy-preserving medical AI 

more practical. We specifically investigate computational overhead, accuracy trade-offs, and potential 

techniques to enhance inference efficiency under FHE constraints. 

https://creativecommons.org/licenses/by-sa/4.0/
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The intersection of FHE and machine learning has gained significant attention in recent years. Early 

research focused on the feasibility of performing basic arithmetic operations on encrypted data. As FHE 

schemes have matured, researchers have explored more complex computations, including those required for 

machine learning algorithms. Several studies have demonstrated the potential of FHE in secure neural network 

training and inference. For instance, early implementations successfully applied FHE to train small neural 

networks on encrypted data, proving that privacy can be preserved without significantly sacrificing model 

accuracy [4]. More recent work by Bourse et al. (2018) has focused on optimizing the efficiency of FHE 

schemes, making them more suitable for real-world applications. 

In the medical domain, FHE has been explored for tasks such as secure genomic data analysis and 

privacy-preserving diagnostics. However, the integration of FHE with neural networks for medical data 

inference remains an emerging area of research. Our work builds upon existing literature by systematically 

evaluating the impact of FHE on inference performance in medical AI applications, identifying key 

bottlenecks, and proposing optimizations to improve efficiency. Through this approach, we provide insights 

into how FHE can be leveraged to secure medical data while ensuring practical usability in machine learning-

based diagnostics and predictive analytics. 

 

 

2. METHOD  

2.1. Homomorphic Encryption 
Homomorphic encryption enables computations to be performed directly on encrypted data without 

requiring decryption [5], allowing third parties to process information while maintaining both privacy and 

utility. The encryption process is the process of changing the letters of plaintext data or information into 

ciphertext [6], the fundamental concept is that operations on encrypted data yield the same results as if 

performed on unencrypted data. There are two main types: Partial Homomorphic Encryption (PHE), which 

supports either addition or multiplication on encrypted data, and Fully Homomorphic Encryption (FHE), which 

allows both operations in any combination. In medical analysis, homomorphic encryption is particularly 

valuable for privacy-preserving AI model training [7], enabling institutions to collaborate on machine learning 

tasks without exposing sensitive patient information. This ensures secure training on encrypted data. 

The primary benefit of homomorphic encryption lies in its ability to securely process encrypted data, 

making it particularly well-suited for analyzing confidential medical images. However, FHE is computationally 

demanding and slow, particularly when dealing with large datasets, which can reduce the efficiency of model 

training. On the other hand, PHE offers better performance but is limited to a single operation, restricting its 

applicability to more complex tasks. Due to these constraints, homomorphic encryption is not ideal for real-

time medical image processing. 

FHE is applied to Neural Network inference by enabling computation on encrypted medical data 

without requiring decryption. The process involves several key steps: 

1. Data Encryption: Medical data are encrypted using an FHE scheme before being sent to the processing 

server. 

2. Encrypted Data Processing: The encrypted data is fed into an Artificial Neural Network (ANN), where 

each layer performs computations directly on ciphertexts using homomorphic operations. 

3. Inference on Encrypted Data: The model processes the encrypted inputs through activation functions 

and weighted connections to generate predictions in encrypted form. 

4. Decryption of Results: The encrypted inference output is returned to obtain the final prediction. 

This method ensures that sensitive medical data remains secure throughout the inference process, 

mitigating risks associated with unauthorized access. 
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Figure 1. FHE in Neural Network Classification model flowchart 

 

2.2. Neural Network Architecture 

2.2.1. Artificial Neural Networks (ANNs) 

Artificial Neural Networks (ANNs) have evolved from simple perceptron to deep architectures 

capable of learning complex patterns [8]. The provided architecture follows a sequential model, a commonly 

used structure in deep learning frameworks such as TensorFlow and Keras. The network consists of three dense 

layers, which map input features to outputs using trainable weight matrices and bias terms. Similar architectures 

have been employed for binary classification problems, particularly in medical diagnosis, fraud detection, and 

sentiment analysis [9]. 

 

2.2.2. Activation functions 

Activation functions play a crucial role in introducing non-linearity into neural networks, enabling 

them to learn complex representations. Traditional activation functions include Sigmoid, ReLU, and Tanh [10]. 

The architecture in question employs a custom activation function, Square Activation, which squares the input 

values. The Square Activation function is relatively uncommon, but squaring the inputs can amplify the 

differences between positive and negative values, potentially enhancing learning in specific scenarios. Previous 

studies have shown that polynomial activation functions can be effective in approximation tasks [11]. 

 

2.2.3. Loss Functions 

Binary cross-entropy is a widely used loss function for classification problems with two distinct 

classes. It is defined as: 

𝐿 = −
1

𝑁
∑[𝑦𝑖 log(�̂�𝑖) + (1 − 𝑦𝑖) log(1 − �̂�𝑖)]

𝑁

𝑖=1

 

Where 𝑦𝑖 represents the true labels and �̂�𝑖 denotes the predicted probabilities. This function is effective 

in handling imbalanced datasets when combined with proper weighting techniques. 

 

2.2.4. Optimization Techniques 

Optimization algorithms such as Stochastic Gradient Descent (SGD), Adam, and RMSprop 

significantly impact the training efficiency of neural networks. The given architecture allows for a flexible 

optimizer selection, which is critical for adjusting learning rates dynamically. Learning rate scheduling can 

further improve model performance by preventing overshooting or slow convergence [12]. 

 

 

3. RESULTS AND DISCUSSION 

This experiment makes use of HElayers, a specialized software framework designed for secure and 

privacy-preserving computations. It functions entirely as a software-based solution and runs within a Docker 

container on a Linux platform. The framework is implemented in C++ that provides a Python API, making it 

accessible to developers and data scientists. By leveraging HElayers, users can seamlessly incorporate 
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advanced privacy-preserving techniques into their applications. This allows for efficient and secure data 

processing while maintaining ease of use within a Python environment [13]. 

To investigate the potential of FHE in neural network inference for medical data, we set up an 

experiment involving the following key components: 

1. Data Selection: A dataset of anonymized medical records, focusing on diagnostic information, was 

chosen for the experiment. To validate the applications of the FHE in Neural Network Inference [14], 

we focused on one use case of Predictive Modelling and Health Analytics [15]. Detailed dataset 

comprising health and demographic data of 100,000 individuals, aimed at facilitating diabetes-related 

research and predictive modelling. This dataset includes information on gender, age, location, race, 

hypertension, heart disease, smoking history, BMI, HbA1c level, blood glucose level, and diabetes 

status.  

2. Data Preprocessing: We remove several irrelevant attribute named: location. We also change the 

categorical attribute smoking_history from categorical into numerical. Named: Never (0), No Info (1), 

Not Current/Ever/Former (2), and Current (3).  

3. Neural Network Architecture: A feedforward neural network with multiple hidden layers was selected 

to perform inference tasks on the medical data. This experiment demonstrates a use case in the medical 

domain as well as demonstrating encrypted machine learning. We will demonstrate how we can use 

FHE along with neural networks (NN) to carry out predictions for diabetic detection while keeping 

the data, the NN model and the prediction results encrypted at all times.   

4. Encryption Scheme: The CKKS (Cheon-Kim-Kim-Song) scheme, a popular FHE method optimized 

for approximate arithmetic, was employed to encrypt the medical data. 

5. Inference Process: The encrypted medical data was fed into the neural network, which performed 

inference without decrypting the data. The results were then decrypted to evaluate the performance of 

the model. 

6. Performance Metrics: Accuracy, computation time, and encryption overhead were measured to assess 

the feasibility and efficiency of the approach. 

 

3.1. Generate NN model 
Table 1. Importing Libraries and Setting Seed 

Importing Libraries and Setting Seed 

SET seed_value = 1 

SET environment variable PYTHONHASHSEED to seed_value 

INITIALIZE random seed using `random.seed(seed_value)` 

INITIALIZE numpy seed using `np.random.seed(seed_value)` 

INITIALIZE tensorflow seed using `tf.random.set_seed(seed_value)` 

 

IMPORT required libraries: TensorFlow, Keras, Pandas, Sklearn, h5py, custom utils 

 

DEFINE data path 

IF data path does not exist, CREATE directory 

 

SET training parameters: 

    epochs = 3 

    batch_size = 32 

    optimizer = Adam 

    learning_rate = 0.01 

 

The first section ensures that the entire process is reproducible by setting a fixed seed value for 

Python's random module, NumPy, and TensorFlow. This prevents variations in results caused by random 

initialization. The script then imports various libraries, including TensorFlow for deep learning, Pandas for 

data handling, and Scikit-learn for preprocessing and model evaluation. Additionally, it sets up a directory to 

store data if it doesn’t already exist. Training parameters such as the number of epochs, batch size, optimizer 

type, and learning rate are also defined in this section. The setup is completed with a print statement confirming 

successful initialization. 

Table 2. Load and Preprocess Dataset 
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Load and Preprocess Dataset 

LOAD dataset from CSV file 

PRINT number of samples 

 

EXTRACT features (X) and labels (Y) 

NORMALIZE features using `preprocessing.normalize` 

 

SPLIT dataset into training (67%) and test (33%) sets 

SPLIT training set further into training (67%) and validation (33%) sets 

 

This section reads a dataset from a CSV file located in the specified directory. It extracts the feature 

matrix (X) and target labels (Y), where X consists of the first 14 columns (excluding the first identifier column), 

and Y represents the diabetes diagnosis. After extracting the data, the feature values are normalized to ensure 

they are on a similar scale, which helps in stabilizing the learning process. The dataset is then split into training 

and testing sets, with 67% allocated for training and 33% for testing. The training set is further divided into 

training and validation subsets to fine-tune the model. 

 

Table 3. Handle Class Imbalance 
Handle Class Imbalance 

DEFINE function `replicate_smallest_class(x, y, class_id)` 

EXTRACT minority class samples 

REPLICATE minority class multiple times 

SHUFFLE dataset 

 

CALL function to balance training data 

ADJUST dataset size to be a multiple of batch_size 

# Reshape Labels 

RESHAPE y_train, y_val, y_test to have an extra dimension 

 

Since many real-world medical datasets suffer from class imbalance, where one category (e.g., 

diabetic cases) is underrepresented, this section addresses the issue. A function named replicate_smallest_class 

is defined to artificially expand the minority class by duplicating its samples multiple times. After replication, 

the data is shuffled to maintain randomness and prevent overfitting to repeated patterns. The training dataset is 

then adjusted so that its size remains a multiple of the batch size, ensuring efficient batch processing during 

model training. Finally, the script prints the shapes of the modified datasets to confirm the changes. Neural 

networks often require target labels to be in a specific shape. This section reshapes the labels (y_train, y_val, 

and y_test) into a column vector format to match the expected input format for model training. Reshaping 

ensures that the model correctly interprets the labels during the learning process. A print statement indicates 

that the training data is fully prepared. 

 

Table 4. Save Processed Data 
Save Processed Data 

DEFINE function ‘save_data_set(x, y, data_type)’ 

      SAVE x and y datasets as HDF5 files 

CALL function to save test dataset 

 

To avoid reprocessing the dataset each time the script runs, the processed data is stored in HDF5 files. 

A function called save_data_set is defined to save both features (x) and labels (y) into separate HDF5 files 

under the specified directory. The function is then called to save the test dataset, ensuring that future 

experiments can directly load the prepared data without repeating the preprocessing steps. 

 

3.2. Neural Network encryption 
Table 5. Import library and define dataset & model 

Import library and define dataset & model 

# Import necessary utilities and verify memory usage 

IMPORT utils 

CALL utils.verify_memory() 
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# Define dataset paths based on whether pre-prepared data should be loaded 

SET INPUT_DIR = 'data/diabetic/' 

 

# Define file paths for dataset and model 

SET X_H5 = INPUT_DIR / 'x_test.h5' 

SET Y_H5 = INPUT_DIR / 'y_test.h5' 

SET MODEL_JSON = INPUT_DIR / 'model.json' 

SET MODEL_H5 = INPUT_DIR / 'model.h5' 

 

# Load test samples 

SET batch_size = 4096 

(plain_samples, labels) = utils.extract_batch_from_files(X_H5, Y_H5, batch_size, 0) 

PRINT 'Loaded samples of shape', plain_samples.shape 

 

The first step in the notebook imports necessary utility functions and verifies memory availability 

using utils.verify_memory(). This check ensures that the system has enough resources to handle large datasets 

and neural network computations efficiently. Given that medical datasets can be large, memory optimization 

is crucial to avoid crashes or performance issues. The script includes a conditional section to determine the 

source of the dataset. The notebook loads data from a predefined   (data/diabetic/).  The dataset consists of test 

samples stored in .h5 files (x_test.h5 for input features and y_test.h5 for labels). Additionally, the pre-trained 

neural network model is stored in JSON format (model.json for architecture) and H5 format (model.h5 for 

weights). These file paths are defined as variables to simplify later access. 

The test dataset is loaded using a utility function, utils.extract_batch_from_files(), which extracts a 

batch of samples and corresponding labels from the .h5 files. A batch size of 4096 is defined, meaning the 

function loads 4096 test samples in one go. This batch-based processing is efficient and reduces memory 

overhead compared to loading the entire dataset at once. 

 

Table 6. Initialize and load a plain (unencrypted) neural network model 
Initialize and load a plain (unencrypted) neural network model 

IMPORT pyhelayers 

SET hyper_params = pyhelayers.PlainModelHyperParams() 

SET neural_net_plain = pyhelayers.NeuralNetPlain() 

CALL neural_net_plain.init_from_files(hyper_params, [MODEL_JSON, MODEL_H5]) 

PRINT 'neural_net_plain created and initialized' 

 

A plain (unencrypted) neural network is initialized using pyhelayers.NeuralNetPlain(). This neural 

network model serves as a reference, allowing comparisons between encrypted and unencrypted predictions. 

The model is loaded from the pre-trained JSON and H5 files. At this stage, the model is fully operational but 

does not yet support encrypted computations. 

 

Table 7. Define homomorphic encryption (HE) requirements 

Define homomorphic encryption (HE) requirements 

SET he_run_req = pyhelayers.HeRunRequirements() 

CALL he_run_req.set_he_context_options(["HEaaN_CKKS", "SEAL_CKKS"]) 

CALL he_run_req.set_integer_part_precision(7)  # Max value range = 2^7 = 128 

CALL he_run_req.set_fractional_part_precision(30)  # Precision of 2^-30 

CALL he_run_req.optimize_for_batch_size(batch_size) 

 

To enable encrypted inference, a homomorphic encryption (HE) context must be defined. The 

pyhelayers.HeRunRequirements() object is used to configure encryption settings: 

• HE Context Options: The script specifies two possible HE schemes (HEaaN_CKKS and 

SEAL_CKKS), ensuring compatibility with available cryptographic backends. 

• Integer Precision: The system is set to process numbers with a maximum value of 2^7 = 128, 

ensuring encrypted computations remain within safe numerical limits. 

• Fractional Precision: Floating-point values are stored with an accuracy of 2^-30, which provides 

high precision for medical data processing. 



ISSN: 2715-6427 

 Journal of Electrical Engineering and Computer (JEECOM), Vol. 7, No. 1, April 225 

120 

• Batch Optimization: The script fine-tunes encryption settings for the specified batch size, ensuring 

efficient encrypted processing. 

 

Table 8. Compile the HE model and get an optimal batch size 

Compile the HE model and get an optimal batch size 

SET profile = pyhelayers.HeModel.compile(neural_net_plain, he_run_req) 

SET batch_size = profile.get_optimal_batch_size() 

PRINT profile.to_string() 

PRINT "He profile ready" 

PRINT "Batch size: ", batch_size 

 

Once encryption parameters are set, the script compiles the neural network into an encrypted format 

using pyhelayers.HeModel.compile(). This process transforms the model into an HE-compatible structure, 

allowing it to perform encrypted computations without exposing raw data. Additionally, the optimal batch 

size for encrypted processing is determined to balance efficiency and security. 

 

Table 9. Encode and encrypt the neural network model 

Encode and encrypt the neural network model 

# Create an encryption context 

SET client_context = pyhelayers.HeModel.create_context(profile) 

PRINT 'Crypto-library ready', client_context.print_signature() 

 

# Encode and encrypt the neural network model 

SET client_nn = pyhelayers.NeuralNet(client_context) 

CALL client_nn.encode_encrypt(neural_net_plain, profile) 

PRINT 'client_nn initialized' 

 

Before running encrypted predictions, a cryptographic context is created using 

pyhelayers.HeModel.create_context(profile). This context acts as a secure execution environment, ensuring 

that all computations are performed within an encrypted domain. The system also prints a cryptographic 

signature to verify the integrity of the encryption setup. The neural network is encrypted using 

client_nn.encode_encrypt(). This step transforms the previously loaded plain neural network into an encrypted 

neural network, enabling secure inference. Once encryption is complete, the model is ready to process patient 

data without ever exposing sensitive information.  

 

3.3. Perform prediction on encrypted data 
Table 10. Encrypt the data samples 

Encrypt the data samples 

# Load the Homomorphic Encryption (HE) context 

SET server_context = pyhelayers.load_he_context(context_buffer) 

 

# Load the encrypted neural network model using the HE context 

SET server_nn = pyhelayers.load_he_model(server_context, nn_buffer) 

 

# Load the encrypted test samples 

SET server_samples = pyhelayers.load_encrypted_data(server_context, samples_buffer) 

 

Once the client-side encryption is completed, the server must load the encrypted context, model, and 

input data before performing encrypted inference. This ensures that the computations remain secure and 

private. The process starts with loading the HE context (server_context), which includes encryption settings 

and keys, allowing encrypted operations without decryption. Next, the encrypted neural network model 

(server_nn) is loaded using pyhelayers.load_he_model(). This ensures the server can perform inference without 

accessing the original model, maintaining security. Finally, encrypted test samples (server_samples) are loaded 
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via pyhelayers.load_encrypted_data(). These inputs remain encrypted throughout processing, enabling secure 

predictions without exposing raw data. 

 

Table 11. Perform inference in cloud/server using encrypted data and encrypted NN 
Perform inference in cloud/server using encrypted data and encrypted NN 

# Initialize an encrypted data container for storing predictions 

SET server_predictions = pyhelayers.EncryptedData(server_context) 

 

# Measure execution time while running inference 

START TIMER with label 'predict' and batch_size 

 

# Perform encrypted inference on the encrypted test samples 

CALL server_nn.predict(server_predictions, server_samples) 

 

# Stop the timer and log execution time 

STOP TIMER 

 

#Save encrypted predictions to a buffer for later use 

SET predictions_buffer = server_predictions.save_to_buffer() 

 

After loading the encrypted model and test samples, the next step is to perform inference in the 

encrypted domain. This means the server will process the encrypted inputs using the encrypted model and 

generate encrypted predictions—without ever decrypting the data. 

The process begins with initializing an encrypted data container (server_predictions). This container, 

created using pyhelayers.EncryptedData(server_context), securely holds the encrypted predictions generated 

by the neural network. Keeping these predictions encrypted ensures data privacy throughout the computation. 

To assess performance, execution time is measured using the elapsed_timer('predict', batch_size) utility. Since 

homomorphic encryption (HE) can be computationally intensive, tracking inference time is crucial for 

identifying potential optimizations and improving efficiency. 

Next, encrypted inference is performed using server_nn.predict(). The encrypted test samples 

(server_samples) are fed into the model, generating encrypted predictions (server_predictions). The server 

never decrypts any data during this process, maintaining end-to-end encryption and ensuring data security. 

Once inference is complete, the timer is stopped to record execution time. This benchmarking step helps 

evaluate the computational cost of HE-based operations and guides future improvements. 

Finally, encrypted predictions are saved in predictions_buffer using 

server_predictions.save_to_buffer(). These encrypted results are then sent back to the client, where they can 

be decrypted and interpreted securely. 

 

3.4. Decrypt predictions and assess the result 
Table 12. Decrypting and Evaluating Predictions 

Decrypting and Evaluating Predictions 

# Load the encrypted predictions buffer into an encrypted data object 

SET client_predictions = pyhelayers.load_encrypted_data(client_context, predictions_buffer) 

 

# Decrypt the predictions to get readable results 

SET decrypted_predictions = client_predictions.decrypt() 

 

# Evaluate model performance by comparing decrypted predictions with ground truth labels 

SET accuracy = compute_accuracy(decrypted_predictions, labels) 

 

# Print the accuracy of the encrypted model 

PRINT “Model Accuracy:”, accuracy 

 

# Generate a detailed classification report 

SET report = generate_classification_report(decrypted_predictions, labels) 
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# Print the classification report 

PRINT report 

 

Now that the encrypted neural network has completed its inference on the test data, the next step is to 

decrypt the predictions and evaluate the model’s performance. Since the entire computation was performed in 

an encrypted domain, the output is still encrypted, meaning it needs to be sent back to the client for decryption 

and analysis. This ensures that sensitive medical data remains private throughout the process. 

The process begins with loading encrypted predictions into the client context. The encrypted 

predictions, stored in predictions_buffer, are loaded using pyhelayers.load_encrypted_data(client_context, 

predictions_buffer). This step ensures that decryption aligns with the original encryption settings, preventing 

mismatches or errors. Next, the client proceeds with decrypting the predictions. Since only the client holds the 

decryption key, they use client_predictions.decrypt() to restore the predictions into a human-readable format. 

This allows for direct evaluation against the actual labels. Once decrypted, the model’s accuracy is evaluated 

by comparing the predictions against the ground truth labels (labels). The accuracy score is calculated using 

accuracy_score(labels, decrypted_predictions > 0.5), applying a threshold of 0.5. Predictions above this 

threshold are classified as diabetic (1), while those below are non-diabetic (0). This provides an overall measure 

of the encrypted model's performance. To assess the impact of encryption, the model’s accuracy is printed 

using print("Model Accuracy:", accuracy). Ideally, this value should be close to that of the original unencrypted 

model. A significant drop could indicate precision loss or computational errors introduced by homomorphic 

encryption. 

While accuracy is useful, it does not capture the full picture—especially in imbalanced datasets. Thus, 

a classification report is generated using classification_report(labels, decrypted_predictions > 0.5). This report 

provides key metrics: 

• Precision – How many predicted diabetics were actually diabetic? 

• Recall – How many real diabetics were correctly identified? 

• F1-score – A balance between precision and recall, useful for medical evaluations. 

 

Finally, the classification report is printed using print(report). This helps medical practitioners and 

data scientists assess model performance across different categories. For example, a low recall might indicate 

missed true positives, while low precision could mean misdiagnosed healthy individuals. 

 

3.5. Precision 

Precision measures how many of the predicted positives were actually correct: 

 

Precision =
True Positive

True Positive + False Positive
 

 

• For Class 0 (Non-Diabetic), precision = 0.92, meaning 92% of non-diabetic predictions were correct. 

• For Class 1 (Diabetic), precision = 0.00, meaning the model never predicted diabetes, so there were 

no correct diabetic classifications.  

 

The prediction accuracy results using fully homomorphic encryption (FHE) are similar to those 

obtained without FHE. Both approaches yield   classification report indicates a high precision for class 0 (0.92) 

and a very low recall for class 1 (0.00), resulting in an overall accuracy of 0.92. Despite the encryption method, 

the model's performance remains consistent, with the macro average F1-score at 0.48 and a weighted average 

F1-score of 0.88. The confusion matrix reflects this, with the model correctly predicting most of class 0 but 

struggling to classify instances of class 1. 

 

[
3760  0
346    0

] 
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The matrix shows that the model accurately classifies all class 0 instances but fails to classify any 

class 1 instances, indicating that the model's performance is heavily biased towards class 0. These results are 

consistent regardless of the use of FHE. 

 

Table 13. Model classification matrix 
Metric Class 0 (Non-Diabetic) Class 1 (Diabetic) 

Precision 0.92 0.00 

Recall 1.00 0.00 

F1-Score 0.96 0.00 

Support 3750 346 

 

When evaluating the performance of neural network models on held-out test samples, it was observed 

that models trained with encryption achieved an almost identical accuracy of 92%. This finding suggests that 

the overall performance of neural networks remains consistent, regardless of whether encryption was applied 

during the training phase. 

 

3.6. Recall 

Recall measures how many actual positives were correctly identified: 

Recall =
True Positive

True Positive + False Negative
 

• For Class 0, recall = 1.00, meaning all non-diabetics were correctly identified. 

• For Class 1, recall = 0.00, meaning none of the actual diabetics were correctly classified. The model 

completely failed to detect diabetes. 

 

3.7. F1-Score 
F1-score is the harmonic mean of precision and recall, providing a balanced measure: 

F1 = 2 x
Precision x Recall

Precision + Recall
 

 

The AUC (Area Under the Curve) score is 0.925, which is usually considered excellent. The model is 

perfect at classifying non-diabetics. These findings are highly significant, as they demonstrate that privacy-

preserving techniques, such as homomorphic encryption, do not compromise the accuracy or reliability of 

neural network models. This result reinforces the feasibility and practicality of employing privacy-preserving 

approaches to protect sensitive data, especially in fields where confidentiality and security are paramount. 

By highlighting the comparable performance between encrypted and unencrypted models, this study 

contributes to the growing body of research advocating for the adoption of privacy-preserving machine learning 

techniques. It underscores the potential of homomorphic encryption and similar methods to facilitate secure 

data processing while ensuring the integrity and effectiveness of neural network models. 

4. CONCLUSION 

Integrating Fully Homomorphic Encryption (FHE) into neural network-driven multiclass 

classification presents a transformative opportunity for secure and privacy-focused machine learning. This 

study highlights the viability of training and testing neural network models on encrypted datasets by utilizing 

FHE-based operations for encrypted feature processing, model development, and inference. 

In this research, we implemented a Convolutional Neural Network (CNN) architecture with multiple 

convolutional and fully connected layers optimized using the Adam optimizer. The model was trained with a 

batch size of 32 over three epochs with a learning rate of 0.01. Our experimental findings confirm that achieving 

competitive accuracy in multiclass classification is feasible while preserving the security of the underlying 

data. The proposed model achieved an accuracy of 92%, demonstrating that privacy-preserving neural network 

training using FHE does not significantly compromise performance. 

Employing Fully Homomorphic Encryption in CNN-based classification marks a substantial step 

forward in privacy-preserving data analysis, particularly for domains where confidentiality is paramount. This 
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approach enables secure collaboration, facilitates confidential data sharing, and supports outsourced machine 

learning without exposing private information. The minimal disparity in performance between encrypted and 

traditional neural network models further reinforces the efficiency of this method. 

These findings pave the way for continued exploration of homomorphic encryption and similar 

technologies in data-centric applications, unlocking new possibilities for privacy-conscious machine learning. 

As this technology evolves, it has the potential to redefine how sensitive data is processed, analyzed, and 

safeguarded, fostering trust in an increasingly data-driven world.. 
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