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 Automatic classification of tomato ripeness plays a crucial role in ensuring 

post-harvest quality and efficiency in the horticultural industry. 
This study proposes a combined strategy of Knowledge Distillation (KD) and 

hyperparameter optimization using Optuna to improve the accuracy of the 

ResNet50 student model by leveraging the performance of a MobileNetV2 

teacher model.We used a publicly available Kaggle dataset containing 8,540 
images, categorized into four ripeness levels (green, red, ripe, and rotten), 

comprising 7,157 training images and 1,383 validation images.Each image 

was resized to 224×224 pixels; light augmentation techniques (random 

rotation, brightness–contrast adjustment, flipping, and Gaussian blur) were 
applied only to the training set to prevent overfitting while maintaining 

consistency during evaluation.The MobileNetV2 teacher model was initially 

fine-tuned on the last 20 layers using manual hyperparameters (freeze_until = 

20, dropout = 0.6), achieving an accuracy of 85.8%.Subsequent tuning via 
Optuna identified the optimal configuration (freeze_until = 91, dropout_rate 

= 0.5055), which improved the teacher’s performance to 89.6%.The resulting 

teacher model was then used to distill knowledge into the ResNet50 student: 

under manual settings, the student’s accuracy improved from 55.24% to 
73.25%; when the student model was also optimized using Optuna, its 

accuracy surged to 85.54% nearly matching the teacher.Further evaluation 

using a confusion matrix and ROC curves revealed an increase in per-class 

AUC to the range of 0.91–0.99 in the KD + Optuna student model, confirming 
that this method effectively closes the performance gap between student and 

teacher.These findings demonstrate that combining KD with Optuna-based 

hyperparameter optimization is an effective approach for producing a 

lightweight, fast, and highly accurate tomato ripeness classification model 

ready for deployment in field applications to support post-harvest decision-

making. 
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1. INTRODUCTION 

The classification of tomato (Solanum lycopersicum) ripeness is a fundamental aspect of the 

horticultural industry, closely tied to the quality and economic value of the product.As one of the most popular 

agricultural commodities, tomatoes play a vital role in the human diet due to their rich nutritional content, 

particularly lycopene, which is known for its significant health benefits [1].Tomato ripeness greatly influences 

taste, texture, and post-harvest durability [2].Currently, the classification of ripeness is still largely performed 

manually by farmers who rely on visual color perception, a method that is often subjective and prone to 
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inconsistencies [2].This presents a significant challenge in maintaining product quality throughout the supply 

chain. 

 

With the advancement of technology, automated approaches utilizing computer vision and deep 

learning algorithms have begun to be applied to improve the accuracy of tomato ripeness classification 

[3].Convolutional Neural Network (CNN) models such as ResNet50 and MobileNetV2 have demonstrated 

remarkable effectiveness in image classification due to their ability to extract visual features such as color and 

texture [4].However, the use of models like ResNet50 and MobileNetV2 often demands high computational 

resources and is prone to overfitting, especially under varying visual conditions and limited datasets. 

To address this issue, a Knowledge Distillation (KD) approach has been proposed, which enables the transfer 

of knowledge from a more powerful model (teacher) to a simpler model (student), allowing for good 

classification accuracy with reduced computational complexity. 

 

This study focuses on the use of the same dataset employed in a previous study by Hetharua et al., 

which explored the automation of tomato ripeness classification. In this research, more advanced image 

augmentation techniques were also applied such as contrast enhancement and the implementation of Gaussian 

blur to improve model robustness against lighting variations and background noise, thereby addressing 

limitations identified in the previous study [5].Experimental results showed that applying the KD method 

successfully increased the student model's accuracy from 57% to 72% using a dataset consisting of 8,540 

tomato images.Although the student model did not reach the teacher model's accuracy level of 86.84%, the 

results demonstrate the effectiveness of the proposed approach in improving classification quality. 

 

By leveraging modern technologies such as deep learning and computer vision, this study not only 

has the potential to enhance the efficiency of tomato ripeness classification but also contributes to the 

sustainability and productivity of the agricultural sector as a whole [5].The successful implementation of this 

method is expected to assist farmers in better harvest management and strengthen their competitiveness in 

increasingly demanding markets [6].Accordingly, the objective of this study is to develop and evaluate a deep 

learning-based tomato ripeness classification model that incorporates Knowledge Distillation (KD) and Optuna 

hyperparameter optimization, aiming to improve model accuracy while maintaining computational efficiency. 

Furthermore, this research provides a foundation for future developments in automated fruit classification using 

advanced technologies, contributing to innovation in the agricultural industry and food security. 

 

2. METHOD 

 This section outlines the complete methodological workflow applied in this study.First, tomato image 

data were acquired from the public Kaggle repository and then split into a training set (7,157 images) and a 

validation set (1,383 images).All images were resized to 224×224 pixels and normalized, while only the 

training set underwent light augmentation techniques including random rotation, brightness contrast 

adjustment, flipping, and blurring to enhance sample diversity.The next step involved training the teacher 

model, MobileNetV2, which was fine-tuned on its last 20 layers. This was followed by hyperparameter 

optimization, targeting parameters such as learning rate, early stopping, number of unfrozen layers, and dropout 

rate, in order to identify the optimal configuration.The results from this tuning process were then used in the 

Knowledge Distillation phase, where the student model, ResNet50, was trained to mimic the soft targets 

generated by the teacher. 
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Figure 1: Research Stages  

2.1. Dataset 

This study utilized a dataset obtained from Kaggle, consisting of 8,540 tomato images categorized 

into four classes: overripe, rotten, red, and green tomatoes [7].The training set included 2,197 images of 

overripe tomatoes, 1,044 of rotten tomatoes, 2,173 of red tomatoes, and 1,742 of green tomatoes. Meanwhile, 

the validation set consisted of 427 images of overripe tomatoes, 202 of rotten tomatoes,418 of red tomatoes, 

and 336 of green tomatoes.: 

 

    

(a) Rotten Tomato 
(b) Overripe 

Tomato 

(c) Ripe Red 

Tomato 

(d) Unrip Green 

Tomato 

Figure 2. Tomato Fruit Dataset 

2.2. Preprocessing and Augmentasi 

Each image in the dataset was first resized to a resolution of 224×224 pixels, which is the standard 

input size for both ResNet50 and MobileNetV2 architectures.Subsequently, various light augmentation 

techniques were applied to the training set to enrich sample diversity and prevent overfitting.The augmentation 

transformations included: Random Rotation (rotating images by random multiples of 90°) [8], [9], Random 

Brightness and Contrast, Random Horizontal/Vertical Flip, and Gaussian Blur [10], [11].It is important to note 

that all augmentation techniques were applied exclusively to the training set, while the validation set underwent 

only resizing and normalization without any augmentation, in order to evaluate model performance on 
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“untouched” images [12].Once preprocessing and augmentation were completed, the resulting data batches 

were then fed into the teacher model (MobileNetV2) for initial training. 

 

2.3. Traning Teacher Model 

The teacher model was trained using MobileNetV2 pretrained on ImageNet, where only the last 20 

layers were fine-tuned while the earlier layers were frozen.A classification head was added on top of the feature 

extractor, consisting of a GlobalAveragePooling2D layer, two Dense layers (512 and 256 units with ReLU 

activation and 0.6 dropout), and a softmax output layer with four classes to reduce the risk of overfitting 

[13].The model was compiled using the SGD optimizer (learning rate 1 × 10⁻⁴, momentum 0.9), with 

categorical cross-entropy as the loss function and accuracy as the evaluation metric.Training was conducted 

for 40 epochs on the lightly augmented training set (rotation, brightness–contrast adjustment, flipping, 

blurring), with callbacks including EarlyStopping (patience = 5), ReduceLROnPlateau (patience = 3), 

ModelCheckpoint, and a cosine annealing learning rate schedule.The validation set, which underwent only 

resizing, was used to monitor validation performance.After training, the best-performing weights were saved 

for use in the subsequent Knowledge Distillation process.This process aims to transfer knowledge from the 

teacher model to a smaller student model, which typically has lower performance, in order to produce a 

lightweight model with high accuracy [14]. 

 

2.4. Hyperparameter Tuning 

Following preprocessing and dataset splitting, we applied Bayesian optimization (Optuna) to search 

for the best hyperparameter configuration for the ResNet50 model [15], [16].The search space included a 

learning rate ranging from 1×10⁻⁴ to 1×10⁻², dropout rates between 0.1 and 0.5, and the number of units in the 

first fully connected layer ranging from 16 to 64.Each combination was tested through a short training session 

of 5 epochs and evaluated based on validation accuracy.Once the optimal configuration was identified, the 

model was retrained for a longer duration of 40 epochs.  

 

2.5. Knowledge Distillation and Studen Training 

In the Knowledge Distillation stage, the student model—based on ResNet50 with the last 91 layers 

fine-tuned was equipped with a classification head identical to that of the teacher and trained using a 

combination of hard loss (categorical cross-entropy) and soft loss (KL divergence between the teacher's and 

student’s soft targets at temperature 𝑇 = 3), with a loss weight α = 0.5.The training was conducted for 40 epochs 

using the Adam optimizer (learning rate 1×10⁻⁴), along with callbacks including EarlyStopping (patience = 5), 

ReduceLROnPlateau (patience = 3), a cosine annealing scheduler, and ModelCheckpoint [17], [18].The 

training process utilized the lightly augmented training set, while validation was performed exclusively on 

resized data.The best-performing student weights were then restored for final evaluation. 

 

2.6. Model Evaluation 

The model was evaluated using a confusion matrix to gain deeper insights into misclassification 

patterns.Each element in the confusion matrix indicates the number of correct or incorrect predictions for each 

class, providing a clear overview of where the model most frequently makes classification errors [19].The use 

of a confusion matrix is particularly important in the context of machine learning, as it enables detailed analysis 

of the model’s performance on a per-class basis, thereby facilitating the identification of classes that are often 

misclassified. 

 

3. RESULTS AND DISCUSSION 

 

In this experiment, the researchers utilized a personal computer equipped with an Intel Core i7 12th-

generation processor, 64 GB DDR4 RAM, and Windows 11 Pro, along with Google Colab Pro as a supporting 

platform. The conducted experiments yielded several significant findings related to tomato ripeness image 

classification using a CNN-based approach, with MobileNetV2 serving as the teacher model and ResNet50 as 

the student model. 

 

 

 

3.1. Scenario performed 
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 In the various scenarios conducted, as shown in Table 1, the first experiment was performed using the 

original dataset obtained from the public Kaggle repository. The second experiment was carried out using a 

preprocessed dataset enhanced through augmentation. This study focuses on improving the classification 

performance of ResNet50 by applying the Knowledge Distillation (KD) method in combination with Optuna-

based hyperparameter optimization. 

Table 1. Research Scenario 

     

Category Teacher  Studen Hyperparameter Dataset 

Baseline MobileNetV2 ResNet50 Manual Original 

Augmetasi MobileNetV2 ResNet50 Manual Augmentasi 

Tuned Teacher  MobileNetV2 - Optuna Augmentasi 

KD + Tunde Studen MobileNetV2 ResNet50 Manual Augmentasi 

KD + Tunde Studen MobileNetV2 ResNet50 Optuna Augmentasi 

 

3.2. Hyperparameter Search 

 

 During the hyperparameter tuning stage, Bayesian Optimization (Optuna) was employed to identify 

the optimal values for two key parameters in the ResNet50 model—namely, the number of layers to unfreeze 

(freeze_until), within the range of [10, 100], and the dropout_rate, within the range of [0.2, 0.7].Each trial 

involved a short training run of 5 epochs and was evaluated based on validation accuracy.Out of 30 trials, the 

highest validation accuracy of 1.0 was achieved in the first trial, with the best configuration being: freeze_until 

= 91 and dropout_rate = 0.5055.These parameters were then used for the final training phase prior to the 

Knowledge Distillation process. 

Table 2. Optuna hyperparameter search 

    

Iter Val Accuracy Freeze_until Dropout_rate 

0 1.000 91 0.5055114881 

1 0.9992 11 0.5797830371 

2 1.000 12 0.5959558928 

3 0.9992 70 0.6209434752 

4 1.000 54 0.3115274355 

5 0.9992 76 0.2009426668 

6 1.000 37 0.5688968754 

7 1.000 46 0.2847101267 

 

3.3. Model Performance 

 After the application of Knowledge Distillation, a performance comparison between the "old" 

ResNet50 model (without KD) and the "new" ResNet50 model (with KD and hyperparameter tuning) revealed 

a sign improvement.The original ResNet50 model without distillation achieved an accuracy of approximately 

57%, whereas the KD-enhanced ResNet50 model reached 73% accuracy on the validation set. 

Figure 3 (left) displays the ROC curve for the baseline ResNet50 model: the curve is relatively closer to the 

diagonal, reflecting lower average AUC values (approximately 0.75–0.85 per class). 

In contrast, Figure 4 (right) presents the ROC curve for the KD-based ResNet50, which bends sharply toward 

the upper-left corner, with class-wise AUC values increasing to a range of 0.90–0.99 indicating the improved 

ability of the new model to distinguish between the four classes. 
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(a) Original ResNet50 
(b) Improved ResNet50 

Figure 3. Comparison Result Chart 

 

The improvement can be primarily attributed to two key factors: 

1. Soft-target distillation teaches the student model to mimic the probability distribution of the teacher 

model, enabling the student to capture “soft knowledge” such as inter-class relationships that cannot 

be learned from hard labels alone. 

2. Hyperparameter tuning (freeze_until, dropout_rate) via Optuna ensures that the student model 

operates under an optimal configuration, thereby improving its generalization performance. 

 

3.4. Results 

To evaluate the effectiveness of augmentation, hyperparameter optimization, and Knowledge 

Distillation (KD) on the ResNet50 architecture, we designed five distinct experimental scenarios. 

The first scenario (“Baseline Original”) utilized a MobileNetV2 teacher and a ResNet50 student built with 

manually defined hyperparameters (freeze_until = 20, dropout_rate = 0.6) on the original dataset without 

augmentation; MobileNetV2 achieved an accuracy of 85.76%, while ResNet50 only reached 55.24%. 

In the second scenario (“Baseline Augmentation”), a light augmentation pipeline (rotation, brightness–contrast, 

flipping, blurring) was applied to the training set, but the student's hyperparameters remained manual; this 

improved MobileNetV2’s performance to 86.26%, but caused ResNet50’s accuracy to drop to 53.87%. 

For the third scenario (“Tuned Teacher”), MobileNetV2 was re-trained on the augmented dataset using Optuna-

optimized hyperparameters targeting val_accuracy = 1.000 and yielding freeze_until = 91 and dropout_rate = 

0.5055 resulting in an accuracy of 89.58%.The fourth scenario (“KD Manual”) employed this tuned and 

augmented teacher model to distill knowledge into a ResNet50 student with manual hyperparameters 

(freeze_until = 20, dropout_rate = 0.6), boosting the student’s accuracy from 53.87% to 73.25%. 

Finally, in the fifth scenario (“KD + Tuned Student”), the ResNet50 student adopted the same Optuna-

optimized hyperparameters (freeze_until = 91, dropout_rate = 0.5055) during the KD process, achieving a final 

accuracy of 85.54% nearly matching the performance of the tuned teacher.These five scenarios confirm that 

the combination of augmentation, automated hyperparameter tuning, and knowledge distillation can 

dramatically improve the classification accuracy of the ResNet50 student model, significantly narrowing the 

gap with its teacher counterpart. 
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(a) MobileNetV2 (85.76 %) (b) ResNet50 (55.24 %) 

Figure 4. Performance Graph of the First Scenario 

  

(a) MobileNetV2 (86.26 %) (b) Resnet50 (53.87 %) 

Figure 5. Result Graph of the Second Scenario 

  

(a) MobileNetV2 Manual (86.26 %) (b) MobileNetV2 Optuna (89.58 %) 

Figure 6. Result Graph of the Third Scenario 
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(a) Resnet50 KD Manual (73.25 %) 
(b) Resnet50 KD Optuna (85.54 %) 

Figure 7. Result Graphs of the Fourth and Fifth Scenarios 

 

4. CONCLUSION 

 

 Based on the experiments conducted, this study demonstrates that the combination of light 

augmentation, hyperparameter optimization using Bayesian Optimization (Optuna), and Knowledge 

Distillation (KD) significantly enhances the performance of ResNet50 in classifying the ripeness of large 

tomatoes.Without augmentation and using manual settings, ResNet50 achieved only 55.24% accuracy, and its 

performance did not improve even after augmentation.By tuning the MobileNetV2 teacher model using Optuna 

(freeze_until = 91, dropout_rate = 0.5055), its accuracy increased to 89.58%.Applying KD to the ResNet50 

student with manual hyperparameters boosted its accuracy to 73.25% (+17.38%), and further, KD with Optuna-

optimized hyperparameters pushed the student’s accuracy to 85.54% effectively closing the performance gap 

between student and teacher. 

 Preprocessing steps including resizing, normalization, and light augmentation proved to be crucial for 

enriching data variation and preventing overfitting. Automated hyperparameter tuning ensured that the model 

operated under optimal configurations, while Knowledge Distillation (KD) enabled the student model to 

capture the “soft knowledge” from the teacher—knowledge that cannot be obtained through hard labeling 

alone.Moving forward, this research can be expanded by enlarging or balancing the dataset, applying more 

advanced augmentation techniques, or testing lighter student architectures for real-time applications in the 

field.It is expected that this method can assist agricultural practitioners and the tomato processing industry in 

performing automatic quality classification, thereby reducing losses due to spoilage and increasing processing 

efficiency. 
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