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1. INTRODUCTION

NU Online is one of the most popular Islamic-based digital applications in Indonesia, with more than
one million downloads on the Google Play Store by early 2025. This application provides various Islamic
services such as a digital Quran, prayer schedules, Hijri calendar, daily prayers, zakat calculator, and other
religious content [1]. However, NU Online's rating of only 3+ does not fully represent the level of user
satisfaction accurately [2]. This is due to the discrepancy between the star rating and the content of the reviews.
For example, there are five-star reviews that still contain criticism or suggestions for improvement, as well as
one-star reviews that actually contain positive comments and only highlight minor aspects that need
improvement [3]. This discrepancy makes the numerical rating less reliable as an indicator of user satisfaction,
making it difficult for developers to determine priorities for feature improvements and application quality
enhancements. Therefore, sentiment analysis of user reviews is an important step in understanding public
opinion in a systematic, comprehensive, and objective manner.

Several previous studies have analyzed user sentiment toward religious applications using various
machine learning approaches, but they still have limitations. Hairani and Nurpalah applied Naive Bayes to the
Muslim Pro application with 90% accuracy, but it was less effective for long reviews because it did not consider
word order [4]. accuracy, but it was less effective for long reviews because it did not consider word order [4].
Lusia et al. used Artificial Neural Networks (ANN) on NU Online, but had difficulty capturing the semantic
relationships between words [5]. Meanwhile, the SVM used by Muzayyanah et al. achieved an accuracy of
95.46%, but ignored temporal order, making it less than optimal for modeling contextual meaning [6] These

limitations emphasize the need for methods that are capable of maintaining context, understanding word order,
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and capturing long-term patterns more accurately. Therefore, this study adopts the Long Short-Term Memory
(LSTM) algorithm, a type of Recurrent Neural Network (RNN) designed to recognize patterns in sequential
data. LSTM excels at overcoming context loss in long reviews, capturing semantic relationships between
words, and is equipped with an internal memory cell mechanism that allows the model to remember important
information during the training process [7] [8].

This study analyzed 13,576 user reviews of the NU Online application from the Google Play Store
collected through scraping techniques between February 9, 2021 and January 21, 2025. The reviews underwent
preprocessing and sentiment labeling, followed by exploratory analysis to identify major patterns in user
opinions. For sentiment classification, this study employs a Long Short-Term Memory (LSTM) model, which
is effective for processing sequential text data and capturing contextual relationships between words [9] [10].
Model performance was evaluated using standard classification metrics, including accuracy, precision, recall,
and F1-score, to ensure a reliable representation of user sentiment.

To facilitate the interpretation of sentiment analysis results for non-technical users and developers,
this study uses a web-based visual interface with Gradio [11], which allows rapid integration with machine
learning models[12]. This interface displays sentiment classification results in the form of word clouds, bar
charts, and pie charts based on positive, negative, and neutral categories, and provides a text input feature for
direct sentiment prediction using the LSTM model. Therefore, this study aims to apply and analyze the Long
Short-Term Memory (LSTM) method for sentiment classification of NU Online user reviews and to generate
deeper insights such as identifying dominant positive and negative words and periods with the highest number
of reviews, which can be used to understand user satisfaction more comprehensively and provide actionable
recommendations for improving the application's service quality.

2. METHOD
The sentiment analysis process for NU Online application reviews on the Google Play Store was
carried out through a number of stages, which are presented systematically in Figure 1.
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Figure 1. Research Flow of Sentiment Analysis on NU Online Reviews

2.1 Problem Identification

NU Online, a religious application with over one million downloads, faces the challenge of
unstructured and biased user reviews. The complexity of opinions and data imbalance make sentiment analysis
difficult. This study applies LSTM to improve classification accuracy and support application feature
development. LSTM is chosen because it is capable of capturing word order, maintaining long-term context,
and recognizing semantic relationships in lengthy user reviews, making it more suitable for understanding
nuanced opinions compared to traditional machine learning methods [10] [13].

2.2 Literature Study

Methods such as Naive Bayes, SVM, and ANN have limitations in handling context and imbalanced
data [14] [6] [5]. LSTM is superior in understanding word sequences and has been proven effective on various
platforms [10] [9]. This study applies LSTM to analyze the sentiment of NU Online application users. Reviews
on religious applications often contain loanwords, Arabic terms written in Indonesian, and nuanced expressions
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that require a deep understanding of context. LSTM, with its ability to capture long-term dependencies and
semantic relationships, is the right choice for analyzing these reviews more accurately.

2.3 Dataset Collection

The data in this study came from user reviews of the NU Online application on the Indonesian
language Google Play Store. The collection was carried out using the Google Play Scraper library and stored in
CSV format to facilitate the analysis process. The dataset consists of 13,576 records with 11 columns, including
information such as review content, rating, upload time, and application version. The data range taken was
between February 9, 2021 to January 21, 2025.

2.4 Preprocessing

Text preprocessing was performed to clean and standardize the review data, ensuring consistency in
the dataset. The steps included case folding, where all text was converted to lowercase to maintain uniformity
[15], cleaning to remove invalid characters such as numbers, symbols, punctuation, and emojis [16], and
normalization using a combined dictionary from Kaggle and GitHub which is manually adjusted to correct
typos or abbreviations [17]. Furthermore, tokenization is carried out to break sentences into tokens [18],

stopwords removal to remove common words such as “yang”, “dan”, “atau” [19], Stemming with the Sastrawi
library to change words to their basic form [20].

2.5 Labelling

Data labeling is done to automatically categorize reviews into positive or negative sentiment. This
process uses the Indonesian sentiment dictionary from GitHub which contains a list of words with positive and
negative nuances. The use of this dictionary facilitates classification and ensures consistency and quality of data
for training sentiment analysis models.

2.6 Exploratory Data Analysis (EDA)

The Exploratory Data Analysis (EDA) stage is conducted to understand patterns in the NU Online
application review dataset, such as dominant words, score distribution, and peak review periods. EDA helps
reveal user satisfaction and is the basis for training LSTM-based sentiment models.

2.7 Model Application

The Long Short-Term Memory (LSTM) model was employed to perform sentiment analysis by
partitioning the dataset into training and testing subsets. The textual data were transformed into numerical
representations through tokenization, retaining the 5,000 most frequent words, [21] and subsequently
standardized using sequence padding up to 100 tokens [22]. Model training was optimized using the binary
cross-entropy loss function and the Adam optimizer [23][24], with the addition of EarlyStopping and
ReduceLROnPlateau techniques to mitigate overfitting [25] [26]. This approach allows LSTM to recognize text
context and improve classification accuracy. This methodological design enables the LSTM to capture
contextual dependencies within the text and enhance the accuracy of sentiment classification. Mathematically,
the internal operations of the LSTM are expressed as follows [13]:

fi= o (W,lh i, x,]+b,) &

i= o (W,[h. x]+b) (2)

C= tanh(W [k, x,]+b.) 3)

Ci=(fxC,_+i,*C) (4)

o,=a (W, [h,_l_x,]+bg) (5)

h: = oprtanh (Cy) (6)
2.8 Model Evaluation

Performance evaluation is an important stage in machine learning to assess the extent to which the
model is able to predict new data accurately and reliably [27]. This study uses the Classification Report and
Confusion Matrix methods to measure the performance of the classification model. The Classification Report
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presents metrics such as precision, recall, F1-score, and support for each class [28], where precision shows the
proportion of correct positive predictions, recall measures the model's ability to detect all positive samples, and
F1-score balances the two [29]. The Confusion Matrix provides a detailed overview of the number of correct
and incorrect predictions by class, through components such as TP, TN, FP, and FN [30]. These metrics are
particularly important because the dataset used in this study is imbalanced, making accuracy alone insufficient
to represent performance comprehensively. Therefore, precision, recall, and F1-score complement accuracy by
highlighting the model’s performance on minority classes. From this matrix, accuracy is calculated using the
formula [31]:

TP+TN
Accuracy= )
Total Samples
and the error rate as
Error Rate=1- Accuracy (€]

These two methods complement each other, where the Classification Report is suitable for viewing
overall performance, while the Confusion Matrix is useful for analyzing specific classification errors.
2.9 Gradio

Gradio is an open-source Python framework that makes it easy to create interactive interfaces for
machine learning models such as LSTMs, without the need for complex server setup [12]. In this study, Gradio
was used to display the results of sentiment analysis of the NU Online application. This framework supports
platforms such as Colab and Hugging Face, and allows interactive visualizations such as bar charts and word
clouds [11], thus accelerating model interpretation and collaboration [32]

2.10 Black Box Testing

Black Box Testing is a functional testing method that evaluates a system based on input and output
without looking at the internal structure [33]. Its advantage lies in its ability to detect non-conformities to
specifications, although it is limited because it does not access the source code [34]. In this study, this method
was applied to a Gradio based user interface to ensure that each element functions as intended.

3. RESULTS AND DISCUSSION

3.1 Data Collection

Data collection was done using Google Play Scraper, a Python library to extract NU Online app user
reviews from the Google Play Store. This process uses parameters such as the app ID id.or.nu.app, Indonesian
language and country, and sorting by the most relevant reviews. The initial target was 15.000 reviews, but only
13.576 were available between February 9, 2021 and January 21, 2025. The data was processed using Pandas
and Datetime for timekeeping, then filtered into three main columns: date (at), score (score), and review content
(content), which were saved in CSV format for further analysis. The results of data collection can be seen in
Table 1:

Table 1 NU Online Review Dataset

No Date  Sccore Content
Alhadulillah, superapps NU Online sekarang sudah tersedia di google.
2021-02- apps. Tersedia banyak konten untuk memudahkan warga NU
1 10 5  menjalankan amaliah seperti Qur'an. tahlil, wirid, dll. Monggo diunduh
13:36:51 dan diberi masukan untuk perbaikan versi selanjutnya. Makasih Ada

Hizib Jausan juga. Top kalo ditambahkan Dalailul Khoirot.

seribu sayang Gak ada pilihan suara adzan. @ #* Bisa gak sih tiap

) 20237-03- 1 mencet satu ayat ada pilihan lihat terjemahan. Jadi gk hrus lari ke
2:01:37 pengaturan dulu yg saya kritik ama jawabannya gak nyambung blas

boooosssss mbok di baca lagi pertanyaannya yg bener. terus dibenerin
aplikasinya. jgn asal jawab tp gk nyambung
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the most beautiful application!! @ @ sukaa bangett sama apk i

1357 20215 8_01_ 5 lengkap dan membantuuu banget.., makasii buat developer yg udah buat
6 34423 apk sebagus dan semanfaat iniii sukaaa banget semoga sukses slalu

yaaa..

3.2 Prerpocessing
This study conducted data preprocessing using NLTK and Sastrawi, starting by removing 2.845
duplicate and empty data from the content column, resulting in 10.731 reviews ready for analysis.

3.2.1 Case Folding
In the initial stage, all review texts are converted to lowercase using the lower() function so that the
writing format is more uniform and consistent, thus facilitating the subsequent analysis process. The results of
Case Folding can be seen in Table 2.
Table 2 Preprocessing Result — Case Folding

No Date Case Folding
alhadulillah, superapps nu online sekarang sudah tersedia di google. apps.
2021-02- tersedia banyak konten untuk memudahkan warga nu menjalankan amaliah
1 10 seperti qur'an. tahlil, wirid, dIl. monggo diunduh dan diberi masukan untuk
13:36:51 perbaikan versi selanjutnya. makasih ada hizib jausan juga. top kalo
ditambahkan dalailul khoirot.

2023-03- g'al.< ada. pilihap suara a.dzgn. @ = pisa gak sih tiap mencet satq gyat ah
2 07 2:01:37 pilihan lihat terjemahan. jadi gk hrus lari ke pengaturan dulu yg saya kritik ama
777 jawabannya gak nyambung blas boooosssss mbok di baca lagi pertanyaannya

yg bener. terus dibenerin aplikasinya. jgn asal jawab tp gk nyambung

the most beautiful application!! ® @ sukaa bangett sama apk ini lengkap
dnmembantuuu banget.., makasii buat developer yg udah buat apk sebagus dan
semanfaat iniii sukaaa banget semoga sukses slalu yaaa..

1073 2025-01-
1 18 3:44:23

3.2.2 Cleaning
Next, text cleaning is performed by removing irrelevant characters such as punctuation, numbers,
emojis, and special symbols. This process aims to produce cleaner, more structured, and ready-to-process data.
The cleaning results can be seen in Table 3:
Table 3 Preprocessing Result — Cleaning

No Date Cleaning
alhadulillah superapps nu online sekarang sudah tersedia di google apps
2021-02- tersedia banyak konten untuk memudahkan warga nu menjalankan amaliah
1 10 seperti quran tahlil wirid dll monggo diunduh dan diberi masukan untuk
13:36:51 perbaikan versi selanjutnya makasih ada hizib jausan juga top kalo
ditambahkan dalailul khoirot

ada pilihan suara adzan bisa gak sih tiap mencet satu ayat ada pilihan lihat
2023-03- . L . ” .
2 1~ terjemahan jadi gk hrus lari ke pengaturan dulu yg saya kritik ama jawabannya
07 2:01:37 . .
gak nyambung blas boooosssss mbok di baca lagi pertanyaannya yg bener terus
dibenerin aplikasinya jgn asal jawab tp gk nyambung

the most beautiful application sukaa bangett sama apk ini lengkap dan
membantuuu banget makasii buat developer yg udah buat apk sebagus dan
semanfaat iniii sukaaa banget semoga sukses slalu yaaa

1073 2025-01-
1 18 3:44:23

3.2.3 Normalization

After the text is cleaned, the normalization stage is carried out to change non-standard words or
abbreviations into formal forms. This process uses manual normalization dictionaries from various sources,
such as changing “apk” to “aplikasi” or “tdk” to “tidak”. The results of normalization can be seen in Table 4:
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Table 4 Preprocessing Result — Normalization

No Date Normalization
alhamdulillah superapps nu online sekarang sudah tersedia di google aplikasi
2021-02- tersedia banyak konten untuk memudahkan warga nu menjalankan amaliah
1 10 seperti quran tahlil wirid dan lain lain monggo diunduh dan diberi masukan
13:36:51 untuk perbaikan versi selanjutnya terima kasih ada hizib jausan juga top kalau
ditambahkan dalailul khoirot
bagus lengkap sesuai amalan nu tidak ada iklan tapi sayang seribu sayang tidak
ada pilihan suara azan bisa tidak sih tiap mencet satu ayat ada pilihan lihat
2023-03- terjemahan jadi tidak harus lari ke pengaturan dulu yang saya kritik sama
07 2:01:37 jawabannya tidak menyambung blas boooosssss tolong di baca lagi
pertanyaannya yang benar terus dibenerin aplikasinya jangan asal jawab tapi
tidak menyambung

2

the paling beautiful application suka banget sama aplikasi ini lengkap dan
membantu banget makasi buat developer yang sudah buat aplikasi sebagus dan
semanfaat ini suka banget semoga sukses selalu iya

1073  2025-01-
1 18 3:44:23

3.2.4 Tokenization
Then, the normalized text is broken down into word units (tokens) to make it more structured. For

LR N3 CEINT 299 ¢ b I INT3

example, the sentence [“Saya”, “sangat”, “menyukai”, “aplikasi”, “ini”’]. The Tokenization Results can be seen

in Table 5:
Table 5 Preprocessing Result — Tokenization
No Date Tokenization
['alhadulillah’, 'superapps', 'nu', 'online', 'sekarang', 'sudah’, 'tersedia’, 'di,
'google', 'aplikasi', 'tersedia’, 'banyak’, 'konten', 'untuk', 'memudahkan’, 'warga',
2021_02_||v : (] falh! ! ] () S TR N TR U 1ain! Main!
nu', 'menjalankan’, 'amaliah’, 'seperti', 'quran’, 'tahlil', 'wirid', 'dan’, 'lain’, 'lain’,
1 10 1 U 134 Al ' 1 '3 -l 1 ' 1 ' 1 1 ' 1 Ml
monggo', 'diunduh', 'dan', 'diberi, 'masukan’, 'untuk', 'perbaikan', ‘versi',
13:36:51 1 T 1 1 T ] " 1Th! 1 1 Mi—1! LM ' [ ' 1 \ " \l
selanjutnya', 'terima', 'kasih', 'ada', 'hizib', 'jausan', 'juga', 'top', 'kalau’,
'ditambahkan’, 'dalailul', 'khoirot']
['bagus', 'lengkap', 'sesuai', 'amalan', 'nu', 'tidak’, 'ada’, 'iklan', 'tapi', 'sayang/,
'seribu’, 'sayang', 'tidak’, 'ada’, 'pilihan’, 'suara’, 'azan', 'bisa’, 'tidak’, 'sih', 'tiap',
2023-03- 'mencet', 'satu’, 'ayat', 'ada’, 'pilihan’, 'lihat', 'terjemahan', 'jadi’, 'tidak’, 'harus',

2 'lari', 'ke', 'pengaturan’, 'dulu’, 'yang', 'saya','kritik','sama’, jawabannya','tidak’,
07 2:01:37 1 v T L) LI % B B | A ) b I '
menyambung', 'blas', 'boooosssss', 'tolong', 'di', 'baca', 'lagi', 'pertanyaannya’,
'vang', 'benar’, 'terus', 'dibenerin', 'aplikasinya', 'jangan’, 'asal’, 'jawab', 'tapi’,

'tidak’, 'menyambung']

['the', 'beautiful', 'application’, 'suka', 'banget', 'aplikasi', 'lengkap', 'membantu’,
'banget', 'makasi', 'developer’, 'aplikasi', 'sebagus', 'semanfaat', 'suka', 'banget’,
'semoga’, 'sukses', 'iya']

1073 2025-01-
1 18 3:44:23

3.2.5 Stopwords Removal
The next step is the removal of stopwords, which are common words such as “dan”, “yang”, “atau”,
and “dari” which are considered not to contribute significant information in the analysis. By removing these
words, the text becomes more concise and meaningful. The Stopword results can be seen in Table 6:
Table 6 Preprocessing Result — Stopwords Removal

No Date Stopwords Removal
['alhadulillah', 'superapps', 'nu', 'online', 'tersedia’, 'google’, 'aplikasi', 'tersedia’,
2021'02' ' [ () (] () . (] : (] () B
1 10 konten', 'memudahkan’, 'warga', 'nu', 'menjalankan’, 'amaliah’, 'quran', 'tahlil',
13:36:51 'wirid', 'monggo', 'diunduh’, 'masukan’, 'perbaikan’, 'versi', 'terima', 'kasih',

'hizib', 'jausan’, 'top', 'dalailul', 'khoirot']
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['bagus', 'lengkap', 'sesuai', 'amalan', 'nu', 'iklan', 'sayang', 'seribu’, 'sayang',

) 2023-03- 'pilihan', 'suara', 'azan', 'sih’, 'mencet’, 'ayat', 'pilihan’, 'lihat', 'terjemahan', 'lari',

07 2:01:37 'pengaturan’, 'kritik', 'jawabannya’, 'menyambung', 'blas', 'boooosssss', 'tolong’,
'baca’, 'pertanyaannya’, 'dibenerin', 'aplikasinya’, 'menyambung']

['the', 'beautiful', 'application’, 'suka’, 'banget’, 'aplikasi', 'lengkap', 'membantu’,
1073 2025'01- ' [N LT (] : oo () () "oy '

banget', 'makasi', 'developer’, 'aplikasi', 'sebagus’, 'semanfaat, 'suka’, 'banget’,
1 18 3:44:23 , A NS

semoga’, 'sukses', 'iya']

3.2.6 Stemming
Finally, stemming is performed to change words into their basic form using the Sastrawi library. For
example, the word “menjalankan” is changed to “jalan”, and “terbaik” to “baik”. This process aims to reduce
word variations and increase analysis efficiency. The stemming results can be seen in Table 7:
Table 7 Preprocessing Result — Stemming

No Date Stemming
2021-02- alhadulillah superapps nu online sedia google aplikasi sedia konten mudah
1 10 warga nu jalan amaliah quran tahlil wirid monggo unduh masuk baik versi

13:36:51 terima kasih hizib jausan top dalailul khoirot
bagus lengkap sesuai amal nu iklan sayang ribu sayang pilih suara azan sih
2023-03- s . . o
2 ..~ Mmencet ayat pilih lihat terjemah lari atur kritik jawab sambung blas boooosssss
07 2:01:37 . : o
tolong baca tanya dibenerin aplikasi sambung

1073 2025-01- the beautiful application suka banget aplikasi lengkap bantu banget makas
1 18 3:44:23 developer aplikasi bagus manfaat suka banget moga sukses iya

3.3 Labelling

Before the labeling process, 401 duplicate data and 203 empty rows were checked and removed in the
stemming column, leaving 8.936 reviews to be analyzed. Sentiment labeling was carried out using a lexicon-
based method using an Indonesian sentiment dictionary containing 3.609 positive words and 6.609 negative
words, each with a value weight between -5 and +5. These values were added up in each review to determine
sentiment; if the result is >0 then it is labeled positive, <0 negative, and =0 is considered neutral although only
two categories, namely positive and negative, are used in this analysis stage. The labeling process is shown in
Table 8, while the distribution of labeling results based on visualization can be seen in Figure 2.

Table 8 Labelling Result

No Date Stemming Word Scores Score Label
Total

alhadulillah  superapps nu
online sedia google aplikasi ['sedia (+2.0)', 'aplikasi (-4.0)', 'sedia
2021-02- sedia konten mudah warga nu (+2.0)', 'mudah (-1.0)', 'quran (+3.0),
1 10 jalan amaliah quran tahlil 'wirid (+4.0)', 'monggo (+3.0), 11 Positive
13:36:51 wirid monggo unduh masuk 'masuk (-3.0), 'baik (-1.0)', 'terima
baik versi terima kasih hizib (+2.0)', 'kasih (-1.0)', 'top (+5.0)']
jausan top dalailul khoirot

[bagus (-4.0), 'lengkap (-3.0)",
bagus lengkap sesuai amal nu 'sesuai (+3.0)', 'amal (+4.0)', 'sayang
iklan sayang ribu sayang pilih (-3.0)', 'sayang (-3.0)', 'pilih (-2.0)',
2023-03- suara azan sih mencet ayat 'suara (-1.0),, 'ayat (-4.0)!, 'pilih
2 07 pilih lihat terjemah lari atur (-2.0)', 'lihat (+3.0)', 'lari (-2.0)", 'atur  -43  Negative
2:01:37 kritik jawab sambung blas (-4.0)', 'kritik (-5.0)", 'jawab (-5.0),
boooosssss tolong baca tanya 'sambung (-3.0)', 'tolong (-2.0)', 'baca
dibenerin aplikasi sambung  (-1.0)', 'tanya (-2.0)', 'aplikasi (-4.0)',
'sambung (-3.0)']

893 2025-01- the beautiful application suka ['suka (-1.0)', ‘'banget (+1.0)', -9  Negative
6 18 banget aplikasi lengkap bantu 'aplikasi (-4.0)', 'lengkap (-3.0),
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‘bantu  (-4.0)', 'banget (+1.0),
‘aplikasi  (-4.0)', ‘'bagus (-4.0),
‘'manfaat (+5.0)', 'suka (-1.0)', 'banget

banget makas developer
3:44:23 aplikasi bagus manfaat suka
banget moga sukses iya

(+1.0)', 'moga (+1.0)", 'sukses (+3.0)']

Senzimert Labeling Distrioution

Neutral (11521

Posinve (3308)

Megatlve 14472
Figure 2 Sentiment Labeling Distribution

Of the total data, 4,472 reviews (50%) were negative, 3,306 reviews (37%) were positive, and 1,158
reviews (13%) were neutral however, neutral data was not used in the further analysis stage because it did not
show a clear trend of opinion.

3.4 Exploratory Data Analysis (EDA)

Further analysis was conducted to gain insights from the LSTM-based sentiment classification results
on NU Online application reviews. The main focus includes identifying the most frequently occurring words in
each sentiment category, as well as the period with the highest number of reviews. The purpose of this analysis
is to understand the tendency of user opinions and provide relevant input in application development.
Visualization of dominant words from the classification results is shown in Figure 3 for positive sentiment and
Figure 4 for negative sentiment. In the positive category, words such as add, steady, and pray reflect satisfaction
with the worship features, especially the prayer schedule feature. For example, one user wrote: " nyaman pakai
aplikasi ini terutama jadwal salat " (August 10, 2023). Conversely, in negative sentiment, words such as
complete, azan, and read often appear as complaints, especially regarding the sound of the call to prayer that
does not work optimally. This is reinforced by a user review on October 24, 2023: " tolong benerin suara azan
soalnya suka henti pas notifikasi, lihat notifikasi pas besar suara kecil, ya henti, tolong benerin, dengar azan
selesai enak dengar, terima kasih ya oke." Analysis of these words provides an overview of the aspects of the
application that get the most attention from users, both positively and negatively.
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Figure 3 Top Positive Words(Non Dominant) Figure 4 Top Negative Words(Non Dominant)

In addition, an analysis of the highest review period is shown in Figure 5. The graph shows a seasonal
pattern from 2021 to early 2025, with the peak of reviews occurring in February and March especially around
the month of Ramadan and a decline in the number of reviews in the middle of the year. A spike was also
recorded in October, along with the commemoration of National Santri Day. The most reviews were recorded in
February 2021 during the initial launch of the application, while the peak of negative reviews occurred in
February 2022, coinciding with the introduction of new features. This pattern indicates that users are more
active in providing reviews when there is an application update or coincides with important religious moments.
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Figure 5 Monthly Distribution of User Reviews by Sentiment Class

3.5 Model Application

The LSTM model is built using data that has gone through the tokenization and padding process so
that each input has a uniform length. The model architecture and parameters are summarized in Figure 6, which
shows the layer structure, number of neurons, and total parameters trained. The training process is carried out
for a maximum of 10 epochs with 10% of the training data allocated as validation data. To avoid overfitting and
improve training efficiency, two callbacks are used, namely EarlyStopping to stop training when the validation
loss does not improve, and ReduceLROnPlateau to adjust the learning rate dynamically. The training results
show that the highest validation accuracy of 94.90% is achieved at the 9th epoch, and training is automatically
stopped at the 10th epoch. The accuracy and loss graphs shown in Figure 7 and Figure 8 show a stable trend: the
accuracy continues to increase, while the loss value decreases, indicating that the model has successfully
learned the data pattern well without symptoms of overfitting, and has strong generalization ability to new data.
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Figure 6 LSTM Model Architecture Summary
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3.6 Model Evaluation
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Evaluation of the LSTM model was conducted to assess its ability to classify the sentiment of NU

Online application user reviews. The evaluation results are shown in Figure 9 (Classification Report) and Figure
10 (Confusion Matrix). Based on the Classification Report, the model shows balanced performance in both
classes (positive and negative), with precision, recall, and F1-score values of 0.93 each. The Confusion Matrix
shows that 626 negative data and 605 positive data were correctly classified, while 44 negative data and 48
positive data were misclassified. This distribution shows that the model is not biased towards one class and is
able to learn proportionally after undersampling techniques are performed.

Based on the evaluation metrics, the model achieved a precision of 93.22%, recall of 92.65%, F1-score
of 92.93%, and accuracy of 93.04%, with an error rate of 6.96%. These values indicate that the developed
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LSTM model has high accuracy, low error, and good generalization ability to new data. Thus, this model is
effective in recognizing user opinions in a balanced manner and can be a reliable tool in sentiment analysis of
the NU Online application.

Confusion Matrix

Classification Report:

precision recall fl-score  support 3
E 250
Megatif @.93 8.93 8.93 &7@ =
Positif @.93 8.93 8.93 653 200
accuracy 8.93 1323 150
Macro avg @.93 8.93 8.93 1323
weighted avg 9.93 9.93 9.93 1323 100
N edicted Label
Figure 9 Classification Report Results Figure 10 Confusion Matrix Results

3.7 Gradio Implementation

As part of the development of the sentiment analysis system, the author built a web interface using
Gradio to facilitate access to the analysis results, especially for non-technical users. Users can upload a CSV file
containing the published and comment columns, then the system automatically displays the sentiment
classification results in the form of a table containing the date, comment content, sentiment label, and prediction
accuracy value. The results can be downloaded again for further analysis. In addition, the system also provides
interactive visualizations such as pie charts for sentiment distribution, bar charts for the most words, and line
charts for review trends based on time, both overall and per sentiment class. The application has been hosted on
Hugging Face Spaces and can be accessed via the link:

https://huggingface.co/spaces/atikmtmainah/analisisnuonline

3.8 Black Box Testing

System testing was conducted using the Black Box method by providing input according to the
scenario and matching the output results with the expected output. The test results are shown in Table 9. All
features show results according to the scenario and are declared acceptable without the need for improvement,
which proves that the system is running well, stable, and easy to use. The Gradio based interface has proven to
be efficient in processing data automatically, making it easier for users to perform sentiment analysis without
having to understand complex technical aspects.

Table 9 Black Box Testing Results

Test Conclusion
Features/Functions Results
Tested Test Scenario Expected results (Match/
este Non- Accepted Repair
Match)
Upload File CSV Upload a CSV file  The file was successfully Match v
with Published and  uploaded and is displayed
Comment columns  in the upload column.
Invalid File Upload Upload afileother ~ An error message appears Match v
than CSV or CSV and the file is not received
without required
columns, then click
“Start Analysis”
“Start Sentiment Press the button after The analysis process runs Match v
Analysis” button uploading a valid and the results are
file displayed.
All Reviews Select the “All Displays table of all Match v

Reviews” tab once reviews, bar chart, pie
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the analysis is

chart, line chart, sentiment

complete. pie, wordcloud
Positive Reviews Select the “Positive  Displaying tables, bar Match
Sentiment” tab after  charts, line charts, and
analysis word clouds of positive
reviews.
Negative Reviews Select the “Negative Displaying tables, bar Match
Sentiment” tab after  charts, line charts, and
analysis word clouds of negative
reviews.
Single Review Fill in the single The analysis results Match
review columnand  (Positive/Negative) appear
click the “Analyze  in the results column.
Now” button.
Download All Results Click the download ~ CSV/ZIP file successfully Match
button to download  downloaded according to
all analysis results analysis result data
Download Click the download ~ CSV/ZIP file successfully Match
Positive/Negative button based on a downloaded according to
Results specific sentiment filter (positive/negative)
Click Analyze without Pressing the “Start ~ An error and warning Match v

Uploading File Analysis” button
without uploading a

file

appears that the file has not
been uploaded.

4. CONCLUSION

This study demonstrates that the Long Short-Term Memory (LSTM) algorithm is capable of
accurately classifying sentiment in user reviews of the NU Online application, achieving precision, recall, and
F1-score values of 93%. The analysis also revealed that negative reviews are generally related to technical
issues such as the azan sound feature, while positive responses are often directed at worship-related features
like the prayer schedule. Review spikes were observed during app launches and religious periods, indicating
strong user engagement. Additionally, the Gradio based interface successfully enhances the accessibility of
sentiment analysis results for non-technical users and shows potential for broader application in other sectors.
For future development, it is recommended to adopt transformer-based labeling methods such as
IndoBERT to improve contextual understanding. The dataset should also be expanded to include reviews from
other platforms to capture more diverse user opinions. Exploring newer deep learning architectures like
Transformer is also encouraged for improved performance. On the application side, NU Online developers are
advised to focus on enhancing features that received negative feedback and to implement regular feedback

monitoring to ensure continuous service improvement.
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