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 Cardiovascular diseases are a leading cause of death globally, making early 

detection of atherosclerosis critical for prevention. Carotid artery ultrasound 

imaging is a common diagnostic tool; however, the limited availability of 
labelled medical images hinders the training of deep learning models. This 

study examines generative adversarial networks (GANs) for data 

augmentation and classification of carotid artery Doppler images to improve 

computer-aided medical diagnosis. Four convolutional neural networks 
(CNNs) – AlexNet, VGGNet, GoogleNet, and CifarNet – are evaluated for 

their classification performance on original and extended datasets. AlexNet 

outperforms the other models, achieving a classification accuracy of 94.18% 

on the extended dataset. The GAN implementation for data augmentation and 
overfitting reduction demonstrates the potential of generative models in 

enhancing the performance of deep learning models in medical image 

analysis, particularly in the "common artery carotid" class. This research 

contributes to understanding GANs as a valuable tool for data augmentation 

and classification in the context of carotid artery ultrasound images. 
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1. INTRODUCTION 

Cardiovascular diseases are among the major causes of death in the world [1]. An early symptom is 

atherosclerosis [2], [3] and its early detection is crucial for prevention. Ultrasound imaging of the carotid artery 

is commonly performed for such prevention. It is characterized in the literature as a popular, affordable and 

non-intrusive method [4], [5].  

 

The growth of deep learning neural networks knowledge and applications have been exponential and critical 

in almost all aspects of modern society, such as security, social media, industry optimization, economy and 

healthcare. Also, taking advantage of such advancements, several studies were conducted, e.g. [6]–[9], to 

segment the carotid artery automatically. It would allow a faster measurement of atherosclerosis risk, because 

analyzing such ultrasound images is very difficult for medical staff [5]. According to the literature, the risk of 

disease can be predicted using parameters that can be extracted from image analysis, such as artery stiffness, 

lumen diameter, and thickness of the arteries [5], [10]. Therefore, automatic segmentation provides a promising 

approach for aiding prevention based on pattern recognition, data analysis and control [11].  

 

One of the recurrent challenges of training deep models is overcoming overfitting. When the dataset is scarce, 

patterns and regularities on training images have reasonably higher accuracy than unprocessed ones and 

classification may not be correct. Such transformations can be geometric, involve colour alteration, kernel 

filters and feature space augmentation [12], [13] and must preserve the given label [14].  

 

https://creativecommons.org/licenses/by-sa/4.0/
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Another challenge is the insufficient availability of medical images required to optimize the number of 

parameters of deep neural networks to maintain their accuracy. Also, collecting and labelling images 

individually is costly and can compromise patients’ personal data. Common solutions to increase the original 

image dataset include data augmentation and data generation techniques. In [15], the authors explore the use 

of generative adversarial networks (GANs) for data augmentation in Computed Tomography (CT) image 

segmentation tasks. Specifically, the authors used a variant of GANs called CycleGAN to generate synthetic 

CT images and augment a limited amount of labelled CT data. They evaluated the effectiveness of CycleGAN-

generated synthetic images and found that they captured the range of variability in authentic CT images. 

Training deep learning models on both the original and synthetic images demonstrated that the augmented 

dataset could significantly improve segmentation performance. In [16], the authors investigate the performance 

of deep convolutional generative adversarial networks (DCGANs) in synthesizing ultrasound images. The 

authors empirically analyze various DCGAN architectures and training strategies to improve image quality and 

realism. 

 

As verified in a recent literature review [17], there is still a need for more research in areas such as image 

generation to address the limited availability of labelled data. The authors suggest that data augmentation and 

generative models such as GANs could be used to increase the size and diversity of training datasets of medical 

images and that further research is needed in this area. They also highlight the importance of addressing issues 

such as interpretability and generalizability in deep learning models for medical image analysis. After an 

extensive literature review, the authors did not find a paper to implement generated data representative of 

carotid arteries. 

 

This paper focuses on appropriating a neural network classifier for the recognition of the carotid artery Doppler 

transversal images, aided by data synthesis via developed GAN, aiming at tackling such difficulties. Therefore, 

the most appropriate generative model to fit our dataset is studied. 

 

The following Research Questions are expected to be discussed and answered: 

RQ1. Are classification accuracy results feasible enough to prove that a neural network approach could be 

used for a clinical coronary artery diagnosis? 

RQ2. Is the implementation of a GAN positive for data augmentation and consequent reduction of model 

overfitting? 

RQ3. What conclusions are achieved when comparing the performance from selected state-of-the-art 

classification models? 

 

2. RELATED WORKS 

 

The section begins by highlighting the importance of automated methods to support the diagnosis of 

deformations in medical images, especially with the application of neural network models for the classification 

and synthesis of new images for deeper training. It then discusses various related works in the field, specifically 

for diagnosing coronary artery disease and carotid artery disease. 

 

In [18], the authors implemented a Generative Adversarial framework for spatial feature extraction and fusion 

of medical and surgical state images. This allowed them to achieve real-time path planning for endovascular 

surgeries. The study used an extensive dataset of 350000 samples validated by experienced surgeons. The 

results showed the great application of real-time path planning for robotic and novice training in endovascular 

surgery. 

 

Similarly, [16] used a DCGAN approach to expand their dataset of ultrasound images of the carotid artery to 

overcome the problem of costly annotated samples and anonymized data. The expanded dataset was then used 

to train a better classifier for detecting and preventing early stages of rare diseases. 

 

Another related work [19] proposed a new GAN approach called Anatomical GAN to support other automated 

coronary artery disease diagnosis methods. The model specializes in correcting anatomically invalid pixel-wise 

segmentation on longitudinal ultrasound images. The model has the potential to automate the examination of 

the shape and texture of artery walls, which requires an expert and is critical to saving lives and minimizing 

costs. However, one important limitation mentioned is misdiagnosing defects due to speckle noise in the image 

and the faulty quality distribution, reflection, and absorption of ultrasound waves by dense structures. 

In [20], the authors compared the performance of classification convolutional neural networks (CNNs) trained 

from scratch, pre-trained "off the shelf" models, and unsupervised pre-trained CNNs in the context of chest X-



140 

      ISSN: 2715-6427          

 Journal of Electrical Engineering and Computer (JEECOM), Vol. 6, No. 1, April 2024 

rays and CT lung nodule identification. The models assessed include a seven-layer "AlexNet-CNN," [14] a 

shallower "CifarNet," [21], [22] and a variant of the "GoogleNet-CNN" [23]. The lung nodule (LN) patches 

used in the study had a resolution of 64x64 pixels, which were up-sampled via bi-linear interpolation to 

256x256 pixels to fit the input dimensions of the AlexNet and GoogleNet models. 

 

The study found that CifarNet was undertrained due to the limited input resolution. At the same time, AlexNet 

had inferior performance, indicating that pre-trained ImageNet CNNs alone may not be optimal as off-the-shelf 

deep image feature extractors. On the other hand, GoogleNet was susceptible to overfitting and performed 

poorly in the study. The authors suggested that transfer learning offers a much better initialization of CNN 

parameters than random initialization, boosting the performance of deep learning models. 

 

In [24], an unsupervised GAN was used to identify abnormal regions of interest in clinical images. The study 

focused on benchmarking with lung nodules in CT scans, microcalcification in X-ray mammography images 

for breast screening, and macular fluid in OCT scans of the retina. A significant problem studied is the limited 

prediction power of annotated training data due to being limited to known markers. A new aspect of the GAN 

is then introduced, which can detect unprecedented anomalies that do not fit the distribution and complement 

the vocabulary of clinical markers. 

 

Finally, [25] experimented with deep learning classification methodologies using 2D echocardiogram and 3D 

Doppler images. The main goal was to detect and classify valvular heart flow patterns using colour imaging. 

The authors used Variational Auto Encoder (VAE) with Convolutional Neural Network (CNN) for feature 

extraction and space reduction. The study demonstrated the potential of VAE-CNN in detecting and classifying 

valvular heart flow patterns. However, the authors did not compare their results with other state-of-the-art 

models. 

 

The related works demonstrate the importance of using deep learning and generative models to address the 

limitations of limited annotated data for medical image diagnosis. While each study had different goals, 

datasets, and methodologies, deep learning and generative models show promise for improving the accuracy 

and efficiency of medical image diagnosis. However, it is essential to carefully consider the limitations and 

potential biases of the models and datasets used in the studies to avoid misdiagnosis and improve patient 

outcomes. 

 

3. BACKGROUND OF CONCEPTS 

 

3.1. Neural Networks 

 

In broader terms, neural network systems use training examples to infer rules for detecting a certain target. A 

conventional network has an input, output, and hidden layers composed of several neurons. Some hidden layers 

work as embeddings, i.e., low-dimensional spaces where we can relate items from high-dimensional vectors 

so that similar inputs end up together. It is a crucial resource of our architecture since it can segregate images 

with similar parameters. To help achieve the desired output, a cost function will quantify how well the bias and 

weights from the output come close to the desired result, and by minimizing this function, the optimal weight-

bias definition is sorted out. Due to high dimensional input, the vectorial cost function 𝐶 has many variables. 

Finding the global minimum requires defining the gradient of 𝐶, a vector of partial derivatives, and applying 

the stochastic gradient descent technique. It estimates the gradient function from a small sample of randomly 

chosen training inputs (mini-batch), followed by picking out another randomly chosen batch and training with 

those until the training data is exhausted and an epoch is completed.  

 

3.2. Convolutional Neural Networks (CNN) 

 

Convolutional Neural Networks (CNN) are a deep learning algorithm commonly used in image and video 

recognition tasks. They are specifically designed to process data with a grid-like topology, such as images, by 

employing a mathematical operation called convolution. 

In a typical CNN architecture, the input image is first passed through convolutional layers, followed by non-

linear activation functions and pooling layers. The convolutional layers learn local patterns or features in the 

image, which are combined and abstracted by subsequent layers to form higher-level representations. 

A cross-entropy cost function is used as the loss or objective function to train a CNN. This function measures 

the difference between the predicted output and the true label and aims to minimize this difference. 



141 

Journal of Electrical Engineering and Computer (JEECOM)  

 

 João Gonçalves: Improving Computer-Aided Medical…  

 

Examples of CNN well-established in the literature are CifarNet, VGGNet, AlexNet and GoogleNet. CifarNet 

is a convolutional network variant of the CIFAR-10 dataset (6000 images for every 10 classes, with 32x32 

pixels) model definition [22], [26], prominent in the literature in [20], [26]. VGGNet is a deeper network, 

compared to CifarNet, that had great success in a few generations of ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) [20], [27]. AlexNet was published in [14] excelled over other learning methods for 

ILSVRC 2012. It has five convolution layers, three pooling layers, and two fully connected layers with 

approximately 60 million free parameters. GoogleNet, introduced in [23], is elaborated deeper than other CNN 

architectures. Initially designed for the fixed image dimension of 256x256x3 pixels, it innovates with 

introducing the “Inception layer”, which merges filters of different dimensions into one. The model has two 

convolution layers, two pooling layers and nine “Inception” layers. More details about the estimated number 

of parameters are listed in Table 1. 

 
Table 1. Number of parameters of different models 

Network AlexNet CifarNet GoogleNet VGGNet 

Number of Parameters (in millions) 60 1.1 6.8 144 

 
 

3.3. Generative Adversarial Network (GAN) 

 

A Generative Adversarial Network (GAN) consists of a “two-player min-max game” [28] between a generator 

and a discriminative model. At the same time, the generator’s goal is to learn the given data distribution from 

a random noise vector input, which in our case are the medical images; a discriminative model determines 

whether the generated sample is a synthetic or real data distribution.  

 

CNNs and GANs are both types of deep learning algorithms but have different purposes and architectures. 

While CNNs are mainly used for image and video recognition tasks and employ convolutional layers to learn 

local patterns and features in the input data, GANs are generative models that learn the underlying distribution 

of the training data and generate new samples that are similar to the real ones. 

 

Both models are trained with iterative methods using highly efficient dropout algorithms [14] and 

backpropagation. To optimize the adversarial process, maximization of the discriminative probability of 

labeling the distribution given correctly is performed. At the same time, the generator's goal is to minimize a 

function, increasing the adversarial model failure probability. Finding this equilibrium with high dimensional 

parameters and non-convex cost functions is challenging and may lead to convergence errors [29], and, for this 

reason, in practice, it is used a gradient descent technique to find the minimum of a cost function. In detail, the 

Adam optimizer was chosen based on adaptive estimation of first and second-order moments. According to 

[30], it is “computationally efficient, has little memory requirement, […], and is well suited for problems that 

are large in terms of data/parameters”.  

 

Minibatch discrimination is a technique used to improve GAN training [31], by preventing the generator from 

collapsing to a state where it emits the same image. Since the discriminator processes each sample separately, 

there is no coordination between the gradients. When they point to similar directions for many images, the 

generator’s output will be constant. In this way, a correct distribution of parameters cannot be achieved as the 

point which generator considers to be a reality is being directed by discriminative gradients around the space 

forever. Generated and real samples are fed to a minibatch layer to correct this problem, which returns image 

features that facilitate the discriminator task to classify single examples. 

 

Training the CNN and GAN discriminative model for classification and detection of medical images Region 

Of Interest (ROI) is made using supervised training, which consists in feeding the model labelled input and 

minimizing the cross entropy between the observed labels and model predictive distribution. It is important to 

mention that the manual labelling of training data refers to image captions and not a pixel-wise segmentation 

of the ROI. This topic is further explored in the next section. 

 

 

 

4. METHODOLOGY 
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In this section, the dataset characteristics and appropriate processing are explored in detail, various CNN 

architectures are introduced, and their performance is compared. Figure 1 shows the flowchart for the proposed 

methodology. As shown in it, the present methodology starts by preparing the original dataset for CNN 

implementation, followed by training the proposed classification networks and electing the most adequate for 

classification. In a second iteration, after applying post-processing filters to GAN-obtained images and 

extending our dataset, the studied CNN models are trained, and the optimal one is chosen for classification. 

 

 
Figure 1. Flowchart of the implemented methodology 

 

4.1. Datasets 

A database of 21 Doppler 2D videos of the transversal view of carotid arteries is used. The bifurcation of one 

terminal of a common carotid artery, Figure 2a, to form internal and external carotid arteries, Figure 2b [32], 

is evident in all videos, as a single common artery slowly transitioning to two distinct arteries can be recognized 

on most of them, and the reverse process on others.  

 

 
Figure 2. Side-by-side comparison of two frames. The left image shows the common carotid artery and the 

right one shows the internal and external carotid artery. With a red square indicating the estimated region of 

transition. 

 

 

 

 

4.2. Frame selection 

 

(a) (b)
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To implement the deep learning neural networks, and since the models were chosen to use images as inputs, 

6419 frames are extracted from the mentioned videos, which incorporate the training and validation dataset. 

This process was made using Python programming language and OpenCV library. The resolution of these 

images is 600 x 450 pixels. Through a manual selection process, we can segregate them into 3116 frames for 

the common carotid artery and 3303 frames for internal and external carotid arteries after bifurcation. We use 

the same training and validation set for all CNN models studied for better benchmarking. 

 

4.3. Pre-processing 

 

Following the data-centric approach [33], the performance of the studied CNN models is enhanced by 

improving the quality of training data and minimizing the impacts of using a relatively small dataset. For this, 

inadequate examples from the training batch are removed, such as those seen in Figure 3, to show unambiguous 

examples for each class and clarify the network labelling instructions. It only applies to the training batch since 

the validation batch is preferred to be hyper-realistic.  

 

 
 

Figure 3. Examples of deleted images due to poor quality 

 

Due to the high precision of CNN-based image processing, accurate artery segmentation is unnecessary, unlike 

in [18], in which real-time path planning demands a precise separation from other human tissues. The 

localization of regions of interest within the image is learned through the selectively weighted neurons in the 

deepest convolutional layers during training [34], [35]. CNN learns to ignore the peripheral noise of the images, 

setting small filter weights to those regions [36]. 

 

4.4. CNN architectures 

 

The convolutional neural network architectures chosen for study are AlexNet, GoogleNet, CifarNet and 

VGGNet. They are tailored to accommodate an input of 284x284x3 pixels. Current literature has supported the 

authors’ choice of using high-parameter networks [20], while other works rely on smaller CNN architectures 

with fewer parameters, such as [26], [37]. 

 

Keras is a deep learning API written in Python, developed to enable fast experimentation, running on top of 

the machine learning platform Tensorflow. Relying on the keras application from TensorFlow (v2.11.0), a few 

lines of code returned a dataset with batches of images from two subdirectories: class “common artery” and 

class “internal and external carotid arteries”. Each batch has 32 images with a resolution of 284x284 pixels. 

This resolution is achieved through bilinear interpolation. Furthermore, it automatically shuffles images with 

a random seed and breaks the data into two fractions, 20% are reserved for validation and 80% for training. 

 

For each one of the architectures applied, the parameters for an input of 284x284 image resolution are tailored.  

While in CifarNet, we increased the filter size, in AlexNet, GoogleNet and VGGNet, which are deeper 

networks, the filter size, stride and pooling parameters were reduced, aiming at achieving promising results. 

Despite being “simplified” versions of the original architectures, they are suited for smaller training datasets. 

 

4.5. CNN training 

CNN models are learnt from scratch; all the parameters are initialized with random Gaussian distributions and 

trained for 10 epochs with a mini-batch size of 32 images. A Binary Cross Entropy is used as a loss function 
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and an Adam optimizer with a default learning rate of 0.001. The authors have used an NVIDIA GeForce RTX 

3060 GPU for model training. 

 

4.6. GAN Architecture 

Two different GAN models are used. The discriminator and generator layer’s parameters are shown in greater 

detail in Figure 4.  

 

 
 

Figure 4. GAN architecture 

 

4.7. GAN training 

Generator and discriminator networks are trained using stochastic gradient descent with a mini-batch size of 

32 images. Pre-processing consists of loading images and resizing them to 64x64 pixels, followed by a 

conversion to a numpy array and scaling is applied to the input images to get the range of -1 to 1 for tanh 

activation.  

 

4.8. Post-processing of GAN-obtained images 

Data quality may not be optimal during image acquisition and formation due to noise, an unwanted component 

from the random variation of brightness and colours. An anisotropic diffusion [38] is used to enhance and 

denoise the training data since it is more adequate than a Median filter followed by a Gaussian filter, which is 

proven to be an effective method for smoothing and better edge estimation [39]–[41]. After this, we applied a 

3x3 sharpen filter [42] and a bilinear interpolation to rescale back to an image resolution of 284x284 pixels. 

Results from GAN trained model extended our dataset in 714 “common artery” frames and 600 “internal and 

external carotid arteries” frames, being that these numbers followed a manual selection from a data-centric 

perspective [33]. A sample of generated images can be seen in Figure 5. 

 

 
 

Figure 5. Sample of generated images. Upper images: common carotid artery; Lower images: external and 

internal arteries 

5. RESULTS AND DISCUSSION 

 

5.1. CNN training results 

GAN generator

Conv2DTtranspose | 4x4 kernel | stride: 2 | pad = 0

Conv2D | 5x5 kernel | activation : tanh

Dense

image: 8 x 8 x 128

Conv2DTtranspose | 4x4 kernel | stride: 2 | pad = 0

Conv2DTtranspose | 4x4 kernel | stride: 2 | pad = 0

output: 64 x 64 x 3

input: 64 x 64 x 3

Conv2D | 4x4 kernel | stride: 2 | pad = 0

Conv2D | 4x4 kernel | stride: 2 | pad = 0

Conv2D | 4x4 kernel | stride: 2 | pad = 0

Fully connected layer

GAN discriminator
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Results from the common and external/internal arteries original dataset classification are reported in Table 2. 

AlexNet yielded the most competitive classification accuracy values of the four investigated CNN models, 

while VGGNet performed below expectations. The performance of VGGNet might be due to overfitting since 

millions of parameters are required to train such a deeper network, and the optimal training dataset might be 

extensively bigger and more diverse than ours. Similarly, GoogleNet falls short compared to AlexNet and 

CifarNet, in terms of classification accuracy, and available data samples were insufficient to train this deep 

network properly from random initialization. CifarNet training accuracy being higher than others is unusual, 

considering that, as in [20], the network would be expected to be under-trained due to the narrow input 

resolution and parameter complexity; however, the validation accuracy fits better in our expectations. 

 
Table 2. Common, external and internal arteries detection results using various CNN models. Numbers in bold indicate 

the best classification accuracy values (original dataset) 

 Training Validation 

Loss Accuracy Loss Accuracy 

AlexNet 0.1248 0.9241 0.1305 0.9244 

GoogleNet 0.137 0.9176 0.1698 0.9072 

CifarNet 0.261 0.9268 0.2397 0.9096 
VGGNet 0.6931 0.5149 0.6924 0.5199 

 
Comparing CNN performances from the original dataset with the extended dataset, reported in Table 3, it is 

evident that increasing training data had a positive result on the accuracy of the models, successfully preventing 

overfitting. Similar to previous analysis, CifarNet accuracy results are unexpected since it is as high as AlexNet 

and GoogleNet scores. The fact that a shallower network obtained a similar training accuracy to deeper 

networks may suggest that the training dataset may be insufficient in quantity and quality. Averse to the general 

tendency, the VGGNet accuracy score decreased slightly for both training and validation sets. Being the 

deepest network, data augmentation was expected to have less effect on preventing overfitting. One can argue 

that integration of synthetic images was the cause of the score decline. Such a complex model tries to fit the 

given data too closely and tends to capture noisy images instigated by anomalous or unexpected features on 

synthetic data. Analogous to the original dataset, AlexNet obtained the higher validation accuracy for the 

extended dataset, which classifies it as the optimal classification network. In Figures 6 and 7, in terms of 

accuracy results, it is clear that during training, the accuracy score quickly got high and stayed somewhat 

constant. During validation, accuracy scores wobble around training values tending to stay higher with the 

increase of epochs. This behaviour matched the expectations and resembled a good deep-learning training 

graph. In terms of loss, for both graphs with epoch increase, the training loss score had a steady decrease, while 

the validation loss score had an unsteady reduction. 

 
Table 3. Common, external and internal arteries detection results using various CNN models. Numbers in bold indicate 

the best classification accuracy values (extended dataset) 

 Training Validation 

Loss Accuracy Loss Accuracy 

AlexNet 0.1139 0.9324 0.1136 0.9418 

GoogleNet 0.4082 0.9279 0.3382 0.9334 

CifarNet 0.2079 0.9358 0.1897 0.9366 

VGGNet 0.6930 0.5120 0.6933 0.4987 
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Figure 6: Training and validation for both loss and accuracy during training of AlexNet without the addition 

of artificial images (original dataset) 

 

 
Figure 7: Training and validation for both loss and accuracy during training of AlexNet with the addition of 

artificial images (extended dataset) 

 

Validation accuracy results are generally lower and less steady than training values since models tend to fit the 

training closely, resulting in high accuracy and low performance on unseen data. As explained in the “Pre-

processing” section, we removed ambiguous examples from the training batch. 

 

5.2. Confusion matrix 

 

A confusion matrix resorts to measuring the performance of the GAN model since it is a good representation 

of multiclass classification problems. The resulting confusion matrix can be seen in Figure 8. The trained 

AlexNet model was used to classify the synthetic images as it showed the best accuracy compared to the other 

CNNs. The True Positive (“TP”) value shows the fraction of correctly predicted labels given by AlexNet, from 

the batch of synthetic single common artery images. Conversely, the True Negative (“TN”) value represents 

the fraction of correctly predicted labels from AlexNet from the generated batch of internal and external carotid 

arteries. Such a high TP value means the GAN model captures and replicates common artery images with high 

precision. However, close values of TN and False Negative (“FN”) show that the GAN model performed poorly 

in replicating with detail internal and carotid arteries. Despite being able to distinguish the two different classes 

of images in the synthetic batch, the results show that the generative model could not find the correct 

distribution of image parameters, which could be hard for human eyes to perceive, which is crucial for AlexNet 

classification. In other words, since the supervised learning method has not restrained the networks to a pixel-

wise analysis, the medical image ROIs that the generative model gives more importance might not be the same 

as those considered by the classification model, which caused the discrepancies between classes in the 

confusion matrix. 
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Figure 8. Confusion matrix for multiclass classification in percentage 

 

5.3. Discussion of the research questions 

 

RQ1. Are classification accuracy results feasible enough to prove that a neural network approach could be 

used for a clinical coronary artery diagnosis? 

 

Experimental results aim for a viable CNN application in real-time clinical coronary artery diagnosis. Despite 

the high classification accuracy, this conclusion does not imply that the proposed CNN models are adequate 

for medical operations. Further testing is required to secure data accuracy and reliability. Furthermore, besides 

regulatory compliance, machine learning implementation depends on user acceptance, integration with existing 

systems, backup and disaster recovery. 

 

RQ2. Is the implementation of a GAN positive for data augmentation and consequent reduction of model 

overfitting? 

 

Implementing a GAN model combined with post-processing filtering resulted in positive data augmentation 

for “common artery carotid” dataset. Concerning the “internal and external carotid arteries” dataset, when 

observing class discrepancies on the confusion matrix, we concluded the generative model could not replicate 

the given data as authentic as before. Generally, complex CNN models performed better on unseen data and 

were agile in capturing the ROI instead of noise in training data, indicating a reduction of model overfitting. 

 

RQ3. What conclusions are achieved when comparing the performance from selected state-of-the-art 

classification models? 

 

When comparing results from the studied classification models, apart from concluding that AlexNet 

outperformed other models, it is important to recognize that CifarNet, a simpler network, achieved better scores 

than deeper, extended models, such as GoogleNet and VGGNet, which indicates that, despite reducing 

overfitting, data augmentation lacked in diversity, quantity and quality to bring out the full potential from 

deeper models. 

 

6. CONCLUSIONS AND FUTURE WORKS 

 

Machine learning applications can identify patterns and be an important tool in diagnosis and triage by 

analysing medical data, imaging scans, and patient history. Generating unique, unseen data from training 

examples to extend the dataset for a classification model is a familiar method in the literature since it is crucial 

in reducing costs and time when collecting samples needed to prevent the overfitting of deep learning models. 

The hypothesis was to settle for the fittest model in a pool of classification CNN models and tailor a generative 

model to obtain realistic variants for two classes of carotid artery Doppler images, common and 

external/internal, to extend our training dataset to improve classification accuracy. After extensive scientific 

review, the authors did not find a paper with similar objectives in this specific context to complement and 

believe that a gap was filled in the literature.  

 

With the original dataset of 6419 medical images, AlexNet achieved the highest classification scores with 

92,41% training accuracy and 92,44% validation accuracy. After extending our dataset with 714 “common 

artery” frames and 600 “internal and external carotid arteries” frames, AlexNet continued to be the leading 
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candidate in classification with 93.24% training and 94,18% validation accuracy. Results comply with the 

hypothesis, yet overfitting is still a predominant limitation in our experiment, and in future works, data 

diversity, quantity and quality must be reviewed and improved. Image transformations must be explored since, 

similar to lymph nodes classified in [20], carotid arteries have no pre-determined anatomic orientation and 

applying geometric transformations that may alter orientation, such as reflection, rotation and translation, is a 

natural choice for data augmentation. In terms of performance metrics, the chosen GAN model excelled in 

generating artificial “common artery carotid” images, with 99,44% of predicted labels being correct. In 

comparison, it returned unclear artificial “internal and external carotid arteries” with 56,26% correct predicted 

labels.  

 

Besides increasing training data, the authors argue that improving noise regularization and the complexity of 

post-processing image treatment are key steps to improve the generative model in further studies. 
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