Penerapan Algoritma K-Nearest Neighbors (KNN) pada Aplikasi Web Menggunakan Framework Django Untuk Seleksi Anggota BEM
AbstractThe Student Executive Board (BEM) has an important role in bridging communication between students and the university and advocating for student interests. In carrying out its duties, BEM requires members who are competent, highly dedicated, and able to work professionally in accordance with the organization's vision and mission. However, the BEM member selection process, especially in the selection stage carried out by the BEM chairman through a series of tests, is still carried out manually. This selection method has various obstacles, such as lack of transparency, subjective bias, and lack of efficiency in decision making. Therefore, this study proposes the application of the K-Nearest Neighbors (KNN) algorithm in a web application based on the Django Framework to help the BEM member selection process more objectively and systematically. The KNN algorithm is applied to classify prospective members based on various relevant attributes, such as academic test results, organizational experience, leadership skills, and level of participation in student activities. With this web-based system, it is hoped that member selection can run more transparently, accurately, and quickly compared to manual methods. System testing shows that this application is able to increase selection efficiency with more measurable results and a user satisfaction level of 93.2%. In addition, the implementation of this system also aims to improve professionalism and effectiveness in the management of student organizations, so that BEM can carry out its role more optimally in developing student leadership character and supporting the creation of a more dynamic and innovative academic environment. |
Keywords
Full Text:
References
Bilya Putra Aji, & Hernawan, A. (2022). Sistem Informasi Surat Elektronik Untuk Akademik UIN Mataram (Dengan Python Django Framework). Jurnal Begawe Teknologi Informasi (JBegaTI), 3(2), 252–262. https://doi.org/10.29303/jbegati.v3i2.777
Cahyanti, D., Rahmayani, A., & Husniar, S. A. (2020). Analisis performa metode Knn pada Dataset pasien pengidap Kanker Payudara. Indonesian Journal of Data and Science, 1(2), 39–43. https://doi.org/10.33096/ijodas.v1i2.13
Faisal, A., & Rusda, D. (2022). Sistem Pendukung Keputusan Penerimaan Bantuan Dana Desa BLT dengan Metode SAW Berbasis WEB. JURIKOM (Jurnal Riset Komputer), 9(1), 131. https://doi.org/10.30865/jurikom.v9i1.3886
Harmilasari, D., & Munggaran, C. (2020). Evaluasi Kepuasan Pengguna Portal Berita Menggunakan Usability Metric. Jurnal Ilmiah Komputasi, 19(3), 293–300. https://doi.org/10.32409/jikstik.19.3.23
Hidayah, A. P., & Rahmawati, S. (2022). Effect of Leadership Style on the Performance of Student Organization Management. The Management Journal of Binaniaga, 7(2), 105–118. https://doi.org/10.33062/mjb.v7i2.3
Khesya, N. (2021). MENGENAL FLOWCHART DAN PSEUDOCODE DALAM ALGORITMA DAN PEMROGRAMAN. Definitions. https://doi.org/10.32388/tf77dy
Kurniawan, H., Apriliah, W., Kurnia, I., & Firmansyah, D. (2021). Penerapan Metode Waterfall Dalam Perancangan Sistem Informasi Penggajian Pada Smk Bina Karya Karawang. Jurnal Interkom: Jurnal Publikasi Ilmiah Bidang Teknologi Informasi Dan Komunikasi, 14(4), 13–23. https://doi.org/10.35969/interkom.v14i4.78
Cholil, S. R., Handayani, T., Prathivi, R., & Ardianita, T. (2021). Implementasi algoritma klasifikasi k-nearest neighbor (knn) untuk klasifikasi seleksi penerima beasiswa. IJCIT (Indonesian Journal on Computer and Information Technology), 6(2), 118-127. https://doi.org/10.31294/ijcit.v6i2.10438
Mahendra, A. A., Suranti, D., & Fredricka, J. (2023). Sistem Pendukung Keputusan Calon Penerima BPJS-PBI Pada Dinas Sosial Kota Bengkulu Menggunakan Metode K-Nearest Neighbor (KNN). Jurnal Media Infotama, 19(2), 391–400. https://doi.org/10.37676/jmi.v19i2.4290
Azizah, R. A., Bachtiar, F. A., & Adinugroho, S. (2022). Klasifikasi kinerja akademik siswa menggunakan neighbor weighted k-nearest neighbor dengan seleksi fitur information gain. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), 9(3). https://doi.org/10.25126/jtiik.2022935751
Suntara, S. A. P., Abdillah, G., & Ilyas, R. (2020). Sistem Pendukung Keputusan Pemilihan Ormawa Berprestasi Universitas Jenderal Achmad Yani. SNIA (Seminar Nasional …, September, 11–16. http://snia.unjani.ac.id/web/index.php/snia/article/view/141
Drajana, I. C. R., & Bode, A. (2022). Prediksi Status Penderita Stunting Pada Balita Provinsi Gorontalo Menggunakan K-Nearest Neighbor Berbasis Seleksi Fitur Chi Square. Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI), 5(2). https://doi.org/10.32672/jnkti.v5i2.4205
Saleh, H. (2023). K-Nearest Neighbor berbasis Seleksi Atribut Chi Square untuk Klasifikasi Penerima Beasiswa Kurang Mampu. Jurnal SIMETRIS, 14(1), 39-47. https://doi.org/10.24176/simet.v14i1.9178
Fauzan, M., Gusti, S. K., & Pizaini, P. (2023). Penerapan Seleksi Fitur untuk Klasifikasi Penerima Bantuan Sosial Pangkalan Sesai menggunakan Metode K-Nearest Neighbor. Jurnal Sistem Komputer dan Informatika (JSON), 5(1), 1-10. https://doi.org/10.30865/json.v5i1.6654
10.33650/trilogi.v6i1.10871 |
|
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Sunardi Sunardi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This ejournal system and its contents are licensed under
a Creative Commons Attribution-ShareAlike 4.0 International License