Keamanan Pengenalan Wajah Berbasis Deep Learning: Tinjauan Sistematis Serangan Adversarial dan Strategi Pertahanan (Systematic Literature Review)

DOI: https://doi.org/10.33650/trilogi.v6i4.13424

Authors (s)


(1)  Fahmy Syahputra   (Universitas Negeri Medan)  
        Indonesia
(2)  Elsa Sabrina   (Universitas Negeri Medan)  
        Indonesia
(3) * Andika Sitorus   (Universitas Negeri Medan)  
        Indonesia
(4)  Khodijah May Nuri Lubis   (Universitas Negeri Medan)  
        Indonesia
(5)  Frans Jhonatan Saragi   (Universitas Negeri Medan)  
        Indonesia
(6)  Suci Nurrahma   (Universitas Negeri Medan)  
        Indonesia
(7)  Novi Novanni Sinaga   (Universitas Negeri Medan)  
        Indonesia
(*) Corresponding Author

Abstract


Deep learning–based face recognition is widely adopted due to its strong performance, yet its susceptibility to attacks—particularly adversarial attacks—poses critical risks to the security and reliability of biometric systems. This study presents a Systematic Literature Review (SLR) to synthesize evidence on performance, vulnerabilities, and defense strategies in deep learning–based face recognition. The review follows PRISMA guidelines, including literature retrieval from reputable scholarly sources, deduplication, title/abstract screening, and full-text eligibility assessment based on predefined inclusion and exclusion criteria. Study quality is examined through critical appraisal, and findings are synthesized using thematic analysis, yielding four major themes: (1) model performance and factors influencing accuracy, (2) attack types and their impact on recognition outcomes, (3) defense mechanisms and their effectiveness, and (4) real-world deployment constraints (e.g., illumination, pose, image quality, and identity scale). The synthesis indicates that high accuracy does not necessarily imply high robustness; several defenses (e.g., adversarial training, attack detection, and robust learning) can improve resilience but may introduce trade-offs in computational cost and/or accuracy. This review provides a comparative synthesis and a conceptual model linking accuracy–attacks–defenses, and offers practical recommendations for model selection and security evaluation design. Limitations include heterogeneity in datasets and experimental protocols, inconsistent reporting metrics, and potential publication bias


Keywords

adversarial attacks; deep learning; face recognition; robustness; systematic literature review.



Full Text: PDF



References


Al-dmour, H., Tareef, A., Alkalbani, A. M., Hammouri, A., & Alrahmani, B. (2023). Masked Face Detection and Recognition System Based on Deep Learning Algorithms. Journal of Advances in Information Technology, 14(2). https://doi.org/10.12720/jait.14.2.224-232

Chi, J., Kim On, C., Zhang, H., & See Chai, S. (2023). Interactive Mobile Technologies. International Journal of Interactive Mobile, 17(23), 4–19. https://doi.org/https://doi.org/10.3991/ijim.v17i23.40867

Deng, N., Xu, Z., Li, X., Gao, C., & Wang, X. (2024). applied sciences Deep Learning and Face Recognition : Face Recognition Approach Based on the DS-CDCN Algorithm. Applied Sciences. https://doi.org/https://doi.org/10.3390/app14135739

Fakrogha, B. E., Olapegba, P. O., & Uye, E. E. (2025). Anxiety and Depression as Predictors of Quality of Life among University Undergraduates. TRILOGI: Jurnal Ilmu Teknologi, Kesehatan, Dan Humaniora, 6(1), 83–90. https://doi.org/https://doi.org/10.33650/trilogi.v6i1.10799

Hangaragi, S., Singh, T., & Neelima, N. (2023). ScienceDirect ScienceDirect ScienceDirect Face Detection and Recognition Using Face and Mesh and Deep Neural Machine Learning and Data Engineering Face Detection and Recognition Using Face Mesh and * Deep Neural Network Network. Procedia Computer Science, 218, 741–749. https://doi.org/10.1016/j.procs.2023.01.054

Hung Hwang, R., You Lin, J., Ying Hsieh, S., Yu Lin, H., & Liang Lin, C. (2023). Adversarial Patch Attacks on Deep-Learning-Based Face Recognition Systems Using Generative Adversarial Networks. Sensors. https://d

oi.org/https://doi.org/10.3390/s23020853

Iqbal, M. J., Iqbal, M. M., Ahmad, I., Alassafi, M. O., Alfakeeh, A. S., & Alhomoud, A. (2021). Real-Time Surveillance Using Deep Learning. Security and Communication Networks, 2021(1). https://doi.org/10.1155/2021/6184756

Kristanto, V. N., Riadi, I., & Prayudi, Y. (2023). Analisa Deteksi dan Pengenalan Wajah pada Citra dengan Permasalahan Visual. JISKA ( Jurnal Informatika Sunan Kalijaga), 8(1), 78–89. https://doi.org/https://doi.org/10.14421/jiska.2023.8.1.78-89

Long, M., Zhao, X., Zhang, L., & Peng, F. (2022). Detection of Face Morphing Attacks Based on Patch-Level Features and Lightweight Networks. Security and Communication Networks, 2022(1), 12. https://doi.org/10.1155/2022/7460330

Maulidiansyah, M., & Yaqin, M. A. (2023). Deteksi Tumpukan Sampah dengan Metode You Only Look Once (YOLO). TRILOGI: Jurnal Ilmu Teknologi, Kesehatan, Dan Humaniora, 4(2), 76–79. https://doi.org/https://doi.org/10.33650/trilogi.v4i2.6185

Prabha, B., Poonkodi, M., & Joseph, L. (2025). An optimal hybrid deep learning-aided facial emotion detection and classification scheme to identify criminal activities. Automatika, 66(4). https://doi.org/10.1080/00051144.2025.2560147

Ramachandran, S., Nadimpalli, A. V., & Rattani, A. (2021). An Experimental Evaluation on Deepfake Detection using Deep Face Recognition. International Carnahan Conference on Security Technology (ICCST), 1–6. https://doi.org/10.1109/ICCST49569.2021.9717407

Singh, A., Bhatt, S., Nayak, V., & Shah, M. (2023). Automation of surveillance systems using deep learning and facial recognition. International Journal of System Assurance Engineering and Management, 14(1), 236–245. https://doi.org/10.1007/s13198-022-01844-6

Sya’roni, W., Auliya’Abdillah, Y., Arifin, S., & Hibatullah, R. (2025). Klasifikasi Penyakit Daun Sawi Menggunakan VGG19 Berbasis Citra Digital. TRILOGI: Jurnal Ilmu Teknologi, Kesehatan, Dan Humaniora, 6(3), 20–30. https://doi.org/https://doi.org/10.33650/trilogi.v6i3.12106

Wang, M., & Deng, W. (2021). Deep Face Recognition : A Survey. Neurocomputing, 429, 215–244. https://doi.org/https://doi.org/10.48550/arXiv.1804.06655

Xing, H., Tan, S. Y., Qamar, F., & Jiao, Y. (2025). Face Anti-Spoofing Based on Deep Learning : A Comprehensive Survey. Applied Sciences. https://doi.org/https://doi.org/10.3390/app15126891

Yan, L., Zhang, Y., & Zhang, Y. (2023). A fast face recognition system based on annealing algorithm to optimize operator parameters. The Imaging Science Journal ISSN:, 71(4), 323–330. https://doi.org/10.1080/13682199.2023.2182261

Zhang, Y., Wang, Z., Zhang, X., Cui, Z., Zhang, B., Cui, J., & Janneh, L. L. (2022). in face recognition. CAAI Transactions on Intelligence Technology, 8(4), 1391–1402. https://doi.org/10.1049/cit2.12115


Dimensions, PlumX, and Google Scholar Metrics

10.33650/trilogi.v6i4.13424


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Andika Sitorus

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This ejournal system and its contents are licensed under

a Creative Commons Attribution-ShareAlike 4.0 International License