Prediction of Patients' Illness Based on Average Temperature and Rainfall In Az-Zainiyah Clinic Using Backpropagation Method

M Noer Fadli Hidayat
DOI: https://doi.org/10.33650/trilogi.v2i3.3169



Abstract

The purpose of this study is to predict the type of disease in students based on the average temperature and rainfall at the Az-Zainiyah clinic using the backpropagation method. With this research, we hope that the prediction/estimation process on the type of patient's disease using the backpropagation artificial neural network method provides a solution with precise and accurate prediction results based on data on many patients, average temperature, and previous rainfall. This research is carried out through a process of predicting the type of disease by collecting time-series data from patient visit reports. The raw data obtained are examined for completeness and quality of the data. Then, the data was analyzed and applied to an artificial neural network method to predict the type of patient's disease based on many patients, average temperature, and rainfall. Furthermore, the artificial neural network will be optimized by the backpropagation algorithm. From this study, we find that the percentage of precision obtained in the experimental type of pharyngitis/sore throat disease in November 2020 with an average precision percentage is 68.92%, the best precision percentage is 90.25%, and the worst precision percentage 47.59%. In December 2020, the average precision percentage is 41.46%, with the best precision percentage being 65.55%, and the worst precision percentage 4.92%. In the type of dermatitis/itching disease in November 2020, the best precision percentage is 98.81%, the average precision percentage is 68.31%, and the worst precision percentage is -21.57 %. For December 2020, the average precision percentage is -63.27%, the best precision percentage is 48.37%, and the worst precision percentage is -183.85%.


Keywords

prediction; disease; backpropagation

Full Text:

PDF

References

Andriyani, S., dan Sitohang, N. 2018. Implementasi Metode Backpropagation Untuk Prediksi Harga Jual Kelapa Sawit Berdasarkan Kualitas Buah. JURTEKSI Jurnal Teknologi dan Sistem Informas IV(2): 155-164.

Ashari, & Muniar, A. Y. (2016). Implementasi Model Backpropagation Dan Forward Chaining Dalam Mendiagnosa Penyakit Pencernaan, Vol 6, No.02, Desember 2016

B. Rifai, “Algoritma Neural Network untuk Prediksi Penyakit Jantung,” J. Techno Nusa Mandiri, vol. IX, no. 1, pp. 1–9, 2013.

Basariyadi, A. 2017. Definisi Penyakit dan Jenis Penyakit yang Mengancam Manusia. https://majalahpendidikan.com/definisi-penyakit-dan-jenis-penyakit-yang-mengancam-manusia/ . 03 Maret 2019 (06:30).

Bayong Tjasyono, (2004). Klimatologi. ITB. Bandung.

Bustan M. (1997). Pengantar Epidemiologi. Rineka Cipta; Jakarta.

D. WULANDARI, (2011). Peramalan Rata-rata Temperatur Udara Harian Kota Pekanbaru menggunakan Model ARIMA.

Dewi, Candra., Muslikh, M. (2013). Perbandingan Akurasi Backpropagation Neural Network dan ANFIS untuk Memprediksi Cuaca. Program Studi Matematika Universitas Brawijaya. Malang

Ernyasih, (2018). Analisis Hubungan Iklim (Curah Hujan, Kelembaban, Suhu Udara dan Kecepatan Angin) dengan Kasus ISPA di DKI Jakarta Tahun 2011 – 2015, Jurnal Ilmu Kesehatan Masyarakat, Volume 07, Nomor : 03, September 2018, Jakarta.

F. Suhandi, Krisna. 2009. Prediksi Harga Saham Dengan Pendekatan Artificial Neural Network Menggunakan Algoritma Backpropagation, viewed 26 Agustus 2009, .

Fausett, Laurene., 1994, Fundamentals of Neural Networks Architectures, Algorithms, and Applications, London: Prentice Hall, Inc.

H. Wadi, (2020). Jaringan Syaraf Tiruan Backpropagation Menggunakan Python GUI : Langkah demi langkah memahami dan mengimplementasikan jaringan syaraf tiruan Backpropagation untuk prediksi data penjualan air minum dalam kemasan . TR Publisher. Jakarta.

Heriyani, F. (2019). Correlation Between Air Temperature and Humidity. Berkala Kedokteran, 15(1), 1-6.

Kartasapoetra, A.G., 1986, Klimatologi Pengaruh Iklim Terhadap Tanah dan Tanaman, Jakarta: Bina Aksara.

Kusumadewi, Sri., 2003, Artificial Intelligence (Teknik dan Aplikasinya), Yogjakarta: Graha Ilmu.

Muh, A.R. 2017. Peramalan Komoditas Strategis Pertanian Cabai Menggunakan Metode Backpropagation Neural Network. Tugas Akhir. Fakultas Sistem Informasi FTIF Institut Teknologi Sepuluh Nopember. Surabaya.

Novi Indah Pradasari ,F.Trias Pontia W,Dedi Triyanto (2013) Aplikasi Jaringan Syaraf Tiruan Untuk Memprediksi Penyakit Saluran Pernafasan Dengan Metode Backpropagation, Jurnal Coding Sistem Komputer Universitas Tanjungpura pontiakan Vol 1, No 1 (2013).

P atel, Miss Ankeeta R., Joshi, Maulin M. 2013. Heart diseases diagnosis using Neural Network. EC Departement . India.

Paramita RM, Mukono J. (2018). Hubungan Kelembapan Udara dan Curah Hujan Dengan Kejadian Demam Berdarah Dengue Di Puskesmas Gunung Anyar 2010-2016. Indones J Public Heal. 2018;12(2):202. doi:10.20473/ijph.v12i2.2017.202-212.

Patel, Miss Ankeeta R., Joshi, Maulin M. (2013). Heart diseases diagnosis using Neural Network. EC Departement. India.

Psychologymania. 2012. Pengertian Curah Hujan. https://www.psychologymania.com/2013/05/pengertian-curah-hujan.html. 11 Maret 2019 (14:02).

Regariana, C. M. (2005). Atmosfer (Cuaca dan Iklim). Tiga Serangkai, Solo.

Stasiun Klimatologi Darmaga Bogor. (2012). Analisis Hujan dan Indeks Kekeringan Bulan November 2012 dan Prakiraan Hujan Bulan Januari, Februari dan Maret 2013.

Surakusumah W. (2011) Adaptasi dan Mitigasi. Bandung.

Susanti, N. 2014. Penerapan Model Neural Network Backpropagation Untuk Prediksi Harga Ayam. Prosiding SNATIF 2014, Universitas Muria Kudus: 325-332.

Suyanto. 2011.Artificial Intelligence, Revisi ed. Bandung: Informatika

Tjasyono, Bayong., 2004, Klimatologi, Bandung: ITB.

Trimulya, A., Syaifurrahman, dan Setyaningsih, F.A. 2015. Implementasi Jaringan Syaraf Tiruan Metode Backpropagation Untuk Memprediksi Harga Saham. Jurnal Coding Sistem Komputer Untan 03(2): 66-75.


Dimensions, PlumX, and Google Scholar Metrics

10.33650/trilogi.v2i3.3169


Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 M Noer Fadli Hidayat

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This ejournal system and its contents are licensed under

a Creative Commons Attribution-ShareAlike 4.0 International License