Improve Metode Lightgbm untuk Prediksi Harga Mobil Bekas Menggunakan Hyper-Parameter Tuning
AbstractThis study aims to predict used car prices using the LightGBM method and hyperparameter tuning techniques in the context of data science. The analysis process includes collecting historical data on used cars, preprocessing the data to clean and encode variables, and splitting the data into training and testing sets. The LightGBM model was trained and optimized through hyperparameter tuning using GridSearchCV to improve model performance. The model was evaluated using metrics such as Mean Squared Error (MSE) and R-squared. The results indicate that the well-optimized LightGBM model can accurately predict used car prices with high accuracy. The low MSE value (35207938112.028404) and high R-squared value (0.9462871489515565) demonstrate the model's excellent predictive quality. This research provides deeper insights into the factors influencing used car prices and contributes to the development of effective and reliable predictive models. |
Keywords
Full Text:
References
Alibrahim, H., & Ludwig, S. A. (2021). Hyperparameter optimization: Comparing genetic algorithm against grid search and bayesian optimization. 2021 IEEE Congress on Evolutionary Computation (CEC), 1551–1559.
Azriel, A., & Darmawan, D. (2024). PENGEMBANGAN MODEL PREDIKSI CURAH HUJAN HARIAN DI WILAYAH JAKARTA MENGGUNAKAN GRADIENT BOOSTING MACHINES (GBMs) DAN GAME THEORY INTERPRETATION. Jurnal Ilmu Fisika Dan Terapannya (JIFTA), 11(1), 1–9.
Butsianto, S., & Mayangwulan, N. T. (2020). Penerapan data mining untuk prediksi penjualan mobil menggunakan metode K-Means clustering. J. Nas. Komputasi Dan Teknol. Inf, 3(3).
Cao, Q., Wu, Y., Yang, J., & Yin, J. (2023). Greenhouse temperature prediction based on time-series features and LightGBM. Applied Sciences, 13(3), 1610.
Darmawan, Z. M. E., & Dianta, A. F. (2023). Implementasi optimasi hyperparameter GridSearchCV pada sistem prediksi serangan jantung menggunakan SVM. Teknologi: Jurnal Ilmiah Sistem Informasi, 13(1), 8–15.
Diantika, S. (2023). Penerapan Teknik Random Oversampling Untuk Mengatasi Imbalance Class Dalam Klasifikasi Website Phishing Menggunakan Algoritma Lightgbm. JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), 19–25.
Duran, F. (2023). PENELITIAN PERBANDINGAN KINERJA ALGORITMA RANDOM FOREST CLASSIFIER DAN LIGHTGBM CLASSIFIER UNTUK PREDIKSI PENYAKIT JANTUNG. Data Sciences Indonesia (DSI), 3(2), 98–103.
Febriantoro, E., Setyati, E., & Santoso, J. (2023). PEMODELAN PREDIKSI KUANTITAS PENJUALAN MAINAN MENGGUNAKAN LightGBM. SMARTICS Journal, 9(1), 7–13.
Hasibuan, E., & Karim, A. (2022). Implementasi Machine Learning untuk Prediksi Harga Mobil Bekas dengan Algoritma Regresi Linear berbasis Web. Jurnal Ilmiah Komputasi, 21(4), 595–602.
Jesika, S., Ramadhani, S., & Putri, Y. P. (2023). Implementasi Model Machine Learning dalam Mengklasifikasi Kualitas Air. Jurnal Ilmiah Dan Karya Mahasiswa, 1(6), 382–396.
Kriswantara, B., Kurniawati, K., & Pardede, H. F. (2021). Prediksi Harga Mobil Bekas dengan Machine Learning. Syntax Literate ; Jurnal Ilmiah Indonesia, 6(5), 2100. https://doi.org/10.36418/syntax-literate.v6i5.2716
Kurniawan, R., Wintoro, P. B., Mulyani, Y., & Komarudin, M. (2023). Implementasi Arsitektur Xception Pada Model Machine Learning Klasifikasi Sampah Anorganik. Jurnal Informatika Dan Teknik Elektro Terapan, 11(2).
Kusuma, M. D. H., & Hidayat, S. (2024). Penerapan Model Regresi Linier dalam Prediksi Harga Mobil Bekas di India dan Visualisasi dengan Menggunakan Power BI. Jurnal Indonesia: Manajemen Informatika Dan Komunikasi, 5(2), 1097–1110.
M John, L., Shinde, R., Shaikh, S., & Ashar, D. (2022). Predicting House Prices using Machine Learning and LightGBM. Rakshit and Shaikh, Shoaib and Ashar, Devanshu, Predicting House Prices Using Machine Learning and LightGBM.(April 8, 2022).
Nasyuli, L. P., Lubis, I., & Elhanafi, A. M. (2023). Penerapan Model Machine Learning Algoritma Gradient Boosting dan Linear Regression Melakukan Prediksi Harga Kendaraan Bekas. Jurnal Ilmu Komputer Dan Sistem Informasi, 2(2), 299–310.
Nugraha, W. (2021). Prediksi penyakit jantung cardiovascular menggunakan model algoritma klasifikasi. J. Manag. Dan Inform, 9(2), 78–84.
Pamungkas, N., Indriyono, B. V., Mamud, W., Adhim, M. U., Yuanita, S. P., & Adji, D. R. (2023). Kombinasi Metode Fuzzy Multiple Attribute dan Simple Additive Weighting untuk Keputusan Pembelian Mobil Bekas. Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi), 7(1), 245–252.
Pandey, A., Rastogi, V., & Singh, S. (2020). Car’s selling price prediction using random forest machine learning algorithm. 5th International Conference on next Generation Computing Technologies (NGCT-2019).
Radhi, M., Ryan Hamonangan Sitompul, D., Hamonangan Sinurat, S., & Indra, E. (2021). PREDIKSI HARGA MOBIL MENGGUNAKAN ALGORITMA REGRESSI DENGAN HYPER-PARAMETER TUNING. Jurnal Sistem Informasi Dan Ilmu Komputer Prima, 4(2).
Sari, R. R. K. N., Sutisna, W., Wororomi, M. J. M., & Tjahjono, V. R. (2023). Komparasi Model Gerak Brown Geometrik Termodifikasi dan Model Kecerdasan Buatan untuk Prediksi Harga Saham Sektor Kesehatan di Indonesia. JST (Jurnal Sains Dan Teknologi), 12(2).
Shudiq, W. J., As, A. H., & Rahman, M. F. (2020). Penentuan Metode Terbaik Dalam Menentukan Jenis Pohon Pisang Menurut Tekstur Daun (Metode K-NN dan SVM). Jurnal Teknologi Dan Manajemen Informatika, 6(2), 128–136.
Sofyan, M. F., & Nilmada, M. (2023). SISTEM PAKAR PREDIKSI HARGA MOBIL BEKAS MENGGUNAKAN DECISION TREE BERBASIS WEB. UG Journal, 17(4).
Surya Negara, E., Jenderal Ahmad Yani, J., Seberang Ulu, K. I., & Selatan, S. (2023). Sulaiman et al, Komparasi Algoritma K-Nearest Neoghbors dan Random Forest . 337 Komparasi Algoritma K-Nearest Neighbors dan Random Forest Pada Prediksi Harga Mobil Bekas. In Jurnal JUPITER (Vol. 15, Issue 1). www.cardekho.com.
Tang, M., Zhao, Q., Ding, S. X., Wu, H., Li, L., Long, W., & Huang, B. (2020). An improved lightGBM algorithm for online fault detection of wind turbine gearboxes. Energies, 13(4), 807.
Yang, H., Chen, Z., Yang, H., & Tian, M. (2023). Predicting coronary heart disease using an improved LightGBM model: Performance analysis and comparison. IEEE Access, 11, 23366–23380.
Yang, X., Wuchty, S., Liang, Z., Ji, L., Wang, B., Zhu, J., Zhang, Z., & Dong, Y. (2024). Multi-modal features-based human-herpesvirus protein–protein interaction prediction by using LightGBM. Briefings in Bioinformatics, 25(2), bbae005.
Zhang, Y., Zhu, C., & Wang, Q. (2020). LightGBM‐based model for metro passenger volume forecasting. IET Intelligent Transport Systems, 14(13), 1815–1823.
Zhu, Q., Ding, W., Xiang, M., Hu, M., & Zhang, N. (2023). Loan default prediction based on convolutional neural network and LightGBM. International Journal of Data Warehousing and Mining (IJDWM), 19(1), 1–16.
10.33650/trilogi.v5i3.9000 |
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Moch. Aqil Aulady, Ahmad Hudawi AS, Zainal Arifin
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This ejournal system and its contents are licensed under
a Creative Commons Attribution-ShareAlike 4.0 International License