Sentiment Analysis of Netflix Reviws on Goggle Play with Machine Learning
AbstractPenelitian ini bertujuan mengklasifikasikan sentimen pengguna terhadap aplikasi Netflix di Google Play Store, mengatasi tantangan volume ulasan dan keragaman bahasa. Analisis sentimen otomatis diperlukan untuk mengekstraksi informasi emosional dari teks ulasan. Sebanyak 20.000 ulasan dikumpulkan menggunakan web scraping. Data kemudian melalui tahap praproses seperti case folding, cleaning, tokenizing, dan stopword removal. Klasifikasi sentimen berbasis leksikon dilakukan dengan menerjemahkan teks Indonesia ke Inggris menggunakan Google Translate, lalu dianalisis VADER Sentiment Intensity Analyzer. Pembobotan kata diterapkan menggunakan TF-IDF untuk menentukan signifikansi kata dalam dokumen. Perbandingan hasil klasifikasi sentimen dilakukan menggunakan algoritma Support Vector Machine (SVM) dan Naive Bayes. Hasil menunjukkan SVM mencapai akurasi 82%, presisi 83%, recall 89%, dan skor F1 86%. Naive Bayes menghasilkan akurasi 76%, presisi 74%, recall 94%, dan skor F1 83%. Secara keseluruhan, SVM terbukti lebih unggul dalam memberikan klasifikasi sentimen yang seimbang dan akurat dalam studi ini
|
Keywords
Full Text:
References
K. Barik, S. Misra, A. K. Ray, and A. Sukla, “A blockchain-based evaluation approach to analyse customer satisfaction using AI techniques,” Heliyon, vol. 9, no. 6, Jun. 2023, doi: 10.1016/j.heliyon.2023.e16766.
S. Ranjan and S. Mishra, “Perceiving University Student’s Opinions from Google App Reviews,” Dec. 2023, doi: 10.1002/cpe.6800.
V. S. Anoop and S. Sreelakshmi, “Public discourse and sentiment during Mpox outbreak: an analysis using natural language processing,” Public Health, vol. 218, pp. 114–120, May 2023, doi: 10.1016/j.puhe.2023.02.018.
Y. Amirkhalili and H. Y. Wong, “Banking on Feedback: Text Analysis of Mobile Banking iOS and Google App Reviews,” Mar. 2025, [Online]. Available: http://arxiv.org/abs/2503.11861
N. Darraz, I. Karabila, A. El-Ansari, N. Alami, and M. El Mallahi, “Advancing recommendation systems with DeepMF and hybrid sentiment analysis: Deep learning and Lexicon-based integration,” Expert Syst Appl, vol. 279, Jun. 2025, doi: 10.1016/j.eswa.2025.127432.
N. Vedavathi and K. M. Anil Kumar, “E-learning course recommendation based on sentiment analysis using hybrid Elman similarity,” Knowl Based Syst, vol. 259, Jan. 2023, doi: 10.1016/j.knosys.2022.110086.
S. Ranjan and S. Mishra, “Comparative Sentiment Analysis of App Reviews.”
Z. Rahman, P. Sakinah, Y. Hendra, B. Satria, F. Maulana, and A. Q. Ayun, “Sentiment Analysis of Gojek App Reviews on Google Play Store with Natural Language Processing Using Naive Bayes’ Algorithm-Zumardi Rahman et.al Sentiment Analysis of Gojek App Reviews on Google Play Store with Natural Language Processing Using Naive Bayes’ Algorithm,” vol. 06, 2024, doi: 10.54209/jatilima.v6i03.1189.
H. Liu and A. Hosseini, “SASLS: Semantic analysis of sentiment in social networks using Lexicon-Based methodology and Semi-Supervised sentiment annotation,” Ain Shams Engineering Journal, vol. 16, no. 6, May 2025, doi: 10.1016/j.asej.2025.103378.
E. Azeraf, E. Monfrini, and W. Pieczynski, “Improving usual Naive Bayes classifier performances with Neural Naive Bayes based models,” Nov. 2021, [Online]. Available: http://arxiv.org/abs/2111.07307
Hermanto, A. Y. Kuntoro, T. Asra, E. B. Pratama, L. Effendi, and R. Ocanitra, “Gojek and Grab User Sentiment Analysis on Google Play Using Naive Bayes Algorithm and Support Vector Machine Based Smote Technique,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Nov. 2020. doi: 10.1088/1742-6596/1641/1/012102.
Y. Zhang, M. Sun, Y. Ren, and J. Shen, “Sentiment Analysis of Sina Weibo Users under the Impact of Super Typhoon Lekima Using Natural Language Processing Tools: A Multi-Tags Case Study,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 478–490. doi: 10.1016/j.procs.2020.06.116.
C. Li and X. Hu, “Medical Artificial Intelligence in Scholarly and Public Perspective: BERTopic-Based Analysis of Topic-Sentiment Collaborative Mining,” Data Science and Informetrics, May 2025, doi: 10.1016/j.dsim.2025.05.001.
Md. N. Hoque, U. Salma, Md. J. Uddin, Md. M. Ahamad, and S. Aktar, “Exploring transformer models in the sentiment analysis task for the under-resource Bengali language,” Natural Language Processing Journal, vol. 8, p. 100091, Sep. 2024, doi: 10.1016/j.nlp.2024.100091.
B. Das Sarit Chakraborty Student Member and I. Member, “An Improved Text Sentiment Classification Model Using TF-IDF and Next Word Negation.”
10.33650/coreai.v6i1.11731 |
|
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Andi Wijaya

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

COREAI: Jurnal Kecerdasan Buatan, Komputasi dan Teknologi Informasi
Published by Technic Faculty of Nurul Jadid University, Probolinggo, East Java, Indonesia.