Detection of Aglaonema Ornamental Plant Diseases Using Convolutional Neural Network Method (Case Study: As Florist).

Adysta Marsha Indrawan
DOI: https://doi.org/10.33650/coreai.v5i1.8539



Abstract

Scale is a type of disease caused by the presence of mites on the underside of leaves, multiplying by consuming vital fluids in Aglaonema. Diseases in Aglaonema leaves can be caused by various factors, including pathogenic microorganisms, environmental disturbances, or other factors such as care mistakes. This research aims to detect diseases in Aglaonema leaves using several stages and processes. The first stage involves converting RGB images, followed by feature extraction using convolutional neural network methods to separate areas of diseased and healthy leaves. The obtained results are then used to classify the types of diseases using Convolutional Neural Network (CNN) methods. The research findings indicate that the system is capable of identifying disease types with an accuracy rate of up to 80% with a dataset of 100 images tested on 20 images.


Keywords

Aglaonema; Convolutional Neural Network;

Full Text:

References

Agus, F., Gifari, O. I., & Kamil, Z. A. (2021). Komputasi Numerik pada Kasus Penentuan Penyakit Tanaman Hias. Inform. Mulawarman J. Ilm. Ilmu Komput, 16(1), 42.

Arif, M. F., Pramana, A. A., Kurniawan, R. F., Arif, M. F., Kristanti, M. M., Kurniawan, H., ... & Syukriah, S. Implementasi Metode Learning Vector Quantization (LVQ) Pada Pengenalan Bahasa. In Seminar Nasional Kewirausahaan (Vol. 1, No. 1, pp. 200-208).Hariyanto, R., & Sa’diyah, K. (2018). Sistem Pakar Diagnosis Penyakit dan Hama Pada Tanaman Tebu Menggunakan Metode Certainty Factor. JOINTECS (Journal of Information Technology and Computer Science), 3(1), 29-32.

Astuti, I., Ariestya, W. W., & Solehudin, B. (2022). Deteksi Objek Daun Semanggi Secara Real Time Menggunakan CNN-Single Shot Multibox Detector (SSD). Jurnal Ilmiah FIFO, 14(1).

Hasan, M. A., Riyanto, Y., & Riana, D. (2021). Klasifikasi penyakit citra daun anggur menggunakan model CNN-VGG16. Jurnal Teknologi dan Sistem Komputer, 9(4), 218-223.

Indraswari, R., Herulambang, W., & Rokhana, R. (2022). Deteksi Penyakit Mata Pada Citra Fundus Menggunakan Convolutional Neural Network (CNN). Techno. com, 21(2), 378-389.


Dimensions, PlumX, and Google Scholar Metrics

10.33650/coreai.v5i1.8539


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Adysta Marsha Indrawan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


Creative Commons License
 
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

COREAI: Jurnal Kecerdasan Buatan, Komputasi dan Teknologi Informasi

Published by Technic Faculty of Nurul Jadid University, Probolinggo, East Java, Indonesia.