ANALYSIS AND IDENTIFICATION OF NEW STUDENT ACCEPTANCE SYSTEM WITH EQUAL WIDTH INTERVAL DISCRETIZATION TECHNIQUE IN K-MEANS CLUSTERING METHOD (CASE STUDY: SMA NEGERI 9 MEDAN)
AbstractThe admission of new students is the first gate that students and schools must pass through in screening educational objects. It is an important event for a school because it is the starting point that determines the smooth running of a school's work. The new student admission system (PPDB) has been implemented by many schools. One of these schools is SMA Negeri 9 Medan. The Equal-width interval Discretisation technique is the simplest discretization method that divides the range of observed values on each feature/attribute, variable k is a parameter provided by the user. This study will calculate what criteria are used to select new students at the school. The criteria used such as the distance of the new student's residence area to the school, academic achievement, and others are then calculated and as a support, Rapidminer 10.1 software is used. The results of data testing and cluster data will be processed to be considered as recommendations for schools and new students at the school
|
Full Text:
References
Andini, T. I., Witanti, W., & Renaldi, F. (2016). Prediksi Potensi Pemasaran Produk Baru dengan Metode Naïve Bayes Classifier dan Regresi Linear. Seminar Nasional Aplikasi Teknologi Informasi (SNATi).
Ayuni, G. N., & Fitrianah, D. (2019). Penerapan metode Regresi Linear untuk prediksi penjualan properti pada PT XYZ. Jurnal Telematika, 14(2), 79–86.
Gustientiedina, G., Siddik, M., & Deselinta, Y. (2019). Penerapan Naïve Bayes untuk Memprediksi Tingkat Kepuasan Mahasiswa Terhadap Pelayanan Akademis. Jurnal Infomedia: Teknik Informatika, Multimedia, Dan Jaringan, 4(2), 89–93.
Hendrickx, T., Cule, B., Meysman, P., Naulaerts, S., Laukens, K., & Goethals, B. (2015). Mining association rules in graphs based on frequent cohesive itemsets. Advances in Knowledge Discovery and Data Mining: 19th Pacific-Asia Conference, PAKDD 2015, Ho Chi Minh City, Vietnam, May 19-22, 2015, Proceedings, Part II 19, 637–648.
Kamal, I. M., & Ilyas, R. (2017). Prediksi penjualan buku menggunakan data mining di pt. niaga swadaya. Semnasteknomedia Online, 5(1), 1–2.
Lubis, C. P., Rosnelly, R., Roslina, R., Situmorang, Z., & Wanayumini, W. (2021). Penerapan Metode Naïve Bayes dan C4. 5 Pada Penerimaan Pegawai di Universitas Potensi Utama. CSRID (Computer Science Research and Its Development Journal), 12(1), 51–63.
Lumbantoruan, R. (2017). Buletin Ekonomi ISSN: 1410-3842. Buletin Ekonomi, 21(1).
Muin, A. A. (2016). Metode Naive Bayes Untuk Prediksi Kelulusan (Studi Kasus: Data Mahasiswa Baru Perguruan Tinggi). Jurnal Ilmiah Ilmu Komputer Fakultas Ilmu Komputer Universitas Al Asyariah Mandar, 2(1), 22–26.
Nofriansyah, D., Erwansyah, K., & Ramadhan, M. (2016). Penerapan Data Mining dengan Algoritma Naive Bayes Clasifier untuk Mengetahui Minat Beli Pelanggan terhadap Kartu Internet XL (Studi Kasus di CV. Sumber Utama Telekomunikasi). J. Saintikom, 15(2), 81–92.
Nugraha, P., Aribawa, I. W., Priyana, I. P. O., & Indrawan, G. (2016). Penerapan Metode Decision Tree (Data Mining) Untuk Memprediksi Tingkat Kelulusan Siswa Smpn1 Kintamani. Semin. Nas. Vokasi Dan Teknol, 35–44.
Sulardi, P., Hendro, T., & Umbara, F. R. (2017). Prediksi Kebutuhan Obat Menggunakan Regresi Linier. Prosiding SNATIF, 57–62.
Zunaidhi, R., Saputra, W. S. J., & Sari, N. K. (2012). Aplikasi Peramalan Penjualan Menggunakan Metode Regresi Linier. SCAN VOL. VII NOMOR 3, ISSN: 1978, 87.
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 PROCEEDING OF INTERNATIONAL CONFERENCE ON EDUCATION, SOCIETY AND HUMANITY