Water Level Detection and Flood Early Warning System Using Image Processing

Muhammad Akmal Ilmi, I Komang Somawirata, Michael Ardita
DOI: https://doi.org/10.33650/jeecom.v7i1.10851



Abstract

Image processing is a crucial method in modern technology, enabling computers to analyze and extract information from images or videos. This study focuses on the application of image processing technology to detect river water levels using CCTV cameras as part of a flood early warning system in a smart city. The YOLO (You Only Look Once) algorithm is utilized for real-time object detection, such as water levels, aiming to enhance prediction accuracy. This implementation is expected to provide richer visual data compared to traditional sensors. The study involves designing and testing a system that integrates hardware (CCTV cameras and high-spec computers) and software such as OpenCV and Python. Data in the form of river images is processed using image processing algorithms to analyze water levels in real-time. The system's performance is evaluated in terms of accuracy, precision, recall, and processing speed (FPS), as well as the environmental impact on detection results. The results indicate that the YOLO-based image processing system achieves high accuracy in detecting water levels. Additionally, the system is capable of sending early warnings via digital notifications, allowing more time for disaster mitigation. These findings suggest that image processing-based systems offer practical, efficient, and cost-effective solutions to support smart city technologies.


Keywords

Image Processing; YOLO; Water Level; Early Warning; Smart City

Full Text:

PDF

References

Balahanti, R., Mononimbar, W., & Gosal, P. H. (2023). Analisis tingkat kerentanan banjir di Kecamatan Singkil Kota Manado. Jurnal Spasial, 11(1). ISSN 2442-3262.

Bar, M.A., Sulistiyanto, S. and Basri, M.H., 2024. Perancangan Kontrol Sistem Fertigasi Pada Green House Berbasis IoT. Akiratech, 1(1), pp.1-11.

A. DLH, “Kerusakan Sungai dan Daerah Aliran Sungai di Indonesia,” Dinas Lingkungan Hidup Kabupaten Grobogan, 2016. https://dlh.grobogan.go.id/index.php/info-lh/berita/36-kerusakansungai-dan-daerah-aliran-sungai-di-indonesia.

Munir, R. 2004. Pengolahan Citra Digital dengan Pendekatan Algoritmik, Informatika. Bandung.

Ginting, Segel dan M. Putuhena, Wiliam. (2014). SISTEM PERINGATAN DINI BANJIR JAKARTA. Jurnal Sumber Daya Air Vol. 10, No. 1. Pusat Penelitian dan Sumber Daya Air Jl. Ir. H. Juanda No. 193, Bandung.

Amril Mutoi Siregar. “PENERAPAN ALGORITMA K-MEANS UNTUK PENGELOMPOKAN DAERAH RAWAN BENCANA DI INDONESIA”, Universitas Buana Perjuangan Karawang.

Hoeda, A.M.L., Tijaniyah, T. and Imaduddin, I., 2024. Perancangan Sistem Kontrol Aquarium Pintar Menggunakan Pompa Elektrik Berbasis IoT. Akiratech, 1(1), pp.12-17.

M. F. Noor, E. Utami, and E. Pramono, “Prediksi Curah Hujan Menggunakan Metode Anfis (Studi Kasus: Kabupaten Hulu Sungai Utara),” J. Inf. J. Penelit. dan Pengabdi. Masy., vol. 5, no. 2, pp. 24–29, 2019.

K. S. Salamah and S. Anwar, “Rancang Bangun Sistem Pendeteksi Banjir Otomatis Berbasis Internet Of Things,” Jurnal Teknologi Elektro, vol. 12, no. 1, p. 40, Jan. 2021, doi: 10.22441/jte.2021.v12i1.008.

N. Pratama, U. Darusalam, and N. D. Nathasia, “Perancangan Sistem Monitoring Ketinggian Air Sebagai Pendeteksi Banjir Berbasis IoT Menggunakan Sensor Ultrasonik,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 1, p. 117, Jan. 2020, doi: 10.30865/mib.v4i1.1905.

P. N. Rahardjo, “7 Penyebab Banjir di Wilayah Perkotaan yang Padat Penduduknya,” J. Air Indones., vol. 7, no. 2, 2018.

Hartono, Jogiyanto. 2011. Pengenalan Komputer. Yogyakarta: ANDI.

Alfarisi, S. (n.d.). Program Studi Teknik Informatika Fakultas Teknik Matematika dan IPA Universitas Indraprasta PGRI. Retrieved from https://core.ac.uk/display/288089145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1.

Putri, Asti Riani. 2016. “Pengolahan Citra Dengan Menggunakan Web Cam Pada Kendaraan Bergerak Di Jalan Raya.” JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika) 1 (01): 1–6. https://doi.org/10.29100/jipi.v1i01.18.

Hutahaean, Harvei Desmon, Bakti Dwi Waluyo, and Muhammad Amin Rais. 2019. “Teknologi Identifikasi Objek Berbasis Drone Menggunakan Algoritma Sift Citra Digital” 04: 193–98.

Effendi, Masud, Fitriyah Fitriyah, and Usman Effendi. 2017. “Identifikasi Jenis Dan Mutu Teh Menggunakan Pengolahan Citra Digital Dengan Metode Jaringan Syaraf Tiruan.” Jurnal Teknotan 11 (2): 67.

Widyaningsih, Maura. 2017. “Identifikasi Kematangan Buah Apel Dengan Gray Level Co-Occurrence Matrix (GLCM).” Jurnal SAINTEKOM 6 (1): 71. https://doi.org/10.33020/saintekom.v6i 1.7.

Nugroho, A., 2025. Perancangan dan Pembuatan Dry Cabinet Menggunakan Konsep Internet of Things (IoT). Akiratech, 2(1), pp.37-43.

A. Kadir. 2019. Langkah Mudah Pemrograman OpenCV & Python. Elex Media Komputindo.

Setyobudi, R., 2023. Utilization of tds sensors for water quality monitoring and water filtering of carp pools using IoT. EUREKA: Physics and Engineering, (6), pp.69-77.


Dimensions, PlumX, and Google Scholar Metrics

10.33650/jeecom.v7i1.10851


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Muhammad Akmal Ilmi, I Komang Somawirata, Michael Ardita

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License
 
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Journal of Electrical Engineering and Computer (JEECOM)
Published by LP3M Nurul Jadid University, Indonesia, Probolinggo, East Java, Indonesia.