Deep Learning Models For Youtube Sentiment Analysis: A Comparative Study Of Bert And Gru In Danantara Indonesia

DOI: https://doi.org/10.33650/jeecom.v7i2.12064

Authors (s)


(1)  M. Alfa Rizy   (AMIKOM University of Yogyakarta)  
        Indonesia
(2) * Ema Utami   (AMIKOM University of Yogyakarta)  
        Indonesia
(*) Corresponding Author

Abstract


This study aims to analyse public sentiment toward Danantara Indonesia through YouTube comments and compare the performance of two deep learning models, BERT and GRU, in sentiment classification. The dataset consists of 1,065 comments collected through scraping techniques, which were pre-processed and classified into three sentiment categories: positive, neutral, and negative. The results indicate that the IndoBERT model achieved 100% accuracy, with perfect precision, recall, and F1-score for all sentiment classes. In contrast, the GRU model only achieved 60% accuracy, showing a tendency to classify almost all comments as negative sentiment. Sentiment distribution analysis reveals that the majority of comments (60%) express negative sentiment, followed by positive sentiment (25%) and neutral sentiment (15%). The dominance of negative sentiment suggests public distrust and criticism regarding the policies and transparency of Danantara Indonesia. These findings demonstrate that BERT is a more accurate model for sentiment analysis of Indonesian-language texts. Furthermore, this study recommends further evaluation to address data imbalance and improve the model’s generalization across various social contexts in digital media.


Keywords

Sentiment Analysis; Deep Learning; BERT; GRU; YouTube



Full Text: PDF



References


G. R. Team, “YouTube Statistics 2025 [Users by Country + Demographics],” Official GMI Blog. Accessed: Mar. 09, 2025. [Online]. Available: https://www.globalmediainsight.com/blog/youtube-users-statistics/

A. Gelb, S. Tordo, H. Halland, N. Arfaa, and G. Smith, Sovereign Wealth Funds and Long-Term Development Finance: Risks and Opportunities. in Policy Research Working Papers. The World Bank, 2014. doi: 10.1596/1813-9450-6776.

Danantara, “Daya Anagata Nusantara - Danantara.” Accessed: Mar. 08, 2025. [Online]. Available: https://danantara.id

R. An, “The Role of Digital Media in Shaping Public Relations: Developing Successful Online Communication Strategies for Enterprises,” JADHUR, vol. 3, no. 3, pp. 51–68, Sep. 2024, doi: 10.56868/jadhur.v3i3.246.

B. AlBadani, R. Shi, and J. Dong, “A Novel Machine Learning Approach for Sentiment Analysis on Twitter Incorporating the Universal Language Model Fine-Tuning and SVM,” ASI, vol. 5, no. 1, p. 13, Jan. 2022, doi: 10.3390/asi5010013.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” in Proceedings of the 2019 Conference of the North, Minneapolis, Minnesota: Association for Computational Linguistics, 2019, pp. 4171–4186. doi: 10.18653/v1/N19-1423.

K. Cho et al., “Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation,” 2014, arXiv. doi: 10.48550/ARXIV.1406.1078.

A. Amalia, D. Gunawan, and K. Nasution, “Sentiment analysis of GO-JEK services quality using Multi-Label Classification,” J. Phys.: Conf. Ser., vol. 1830, no. 1, Art. no. 1, Apr. 2021, doi: 10.1088/1742-6596/1830/1/012003.

M. Y. Aldean, P. Paradise, and N. A. Setya Nugraha, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 di Twitter Menggunakan Metode Random Forest Classifier (Studi Kasus: Vaksin Sinovac),” INISTA, vol. 4, no. 2, Art. no. 2, Jun. 2022, doi: 10.20895/inista.v4i2.575.

W. A. Degife and B.-S. Lin, “A Multi-Aspect Informed GRU: A Hybrid Model of Flight Fare Forecasting with Sentiment Analysis,” Applied Sciences, vol. 14, no. 10, p. 4221, May 2024, doi: 10.3390/app14104221.

V. P. Kalanjati et al., “Sentiment analysis of Indonesian tweets on COVID-19 and COVID-19 vaccinations,” F1000Res, vol. 12, p. 1007, Apr. 2024, doi: 10.12688/f1000research.130610.4.

A. A. Bhalerao, B. R. Naiknaware, R. R. Manza, and S. K. Bawiskar, “Sentiment Analysis on Covid-19 Vaccination Using Machine Learning Techniques,” in Proceedings of the International Conference on Applications of Machine Intelligence and Data Analytics (ICAMIDA 2022), vol. 105, S. Tamane, S. Ghosh, and S. Deshmukh, Eds., in Advances in Computer Science Research, vol. 105. , Dordrecht: Atlantis Press International BV, 2023, pp. 235–250. doi: 10.2991/978-94-6463-136-4_22.

B. Valarmathi, N. S. Gupta, V. Karthick, T. Chellatamilan, K. Santhi, and D. Chalicheemala, “Sentiment Analysis of Covid-19 Twitter Data using Deep Learning Algorithm,” Procedia Computer Science, vol. 235, pp. 3397–3407, 2024, doi: 10.1016/j.procs.2024.04.320.

A. Susanto, M. A. Maula, I. U. W. Mulyono, and M. K. Sarker, “Sentiment Analysis on Indonesia Twitter Data Using Naïve Bayes and K-Means Method,” JAIS, vol. 6, no. 1, pp. 40–45, May 2021, doi: 10.33633/jais.v6i1.4465.

J. Wang, J. Du, Y. Shao, and A. Li, “Sentiment Analysis of Online Travel Reviews Based on Capsule Network and Sentiment Lexicon,” arXiv.org, 2022, [Online]. Available: https://www.semanticscholar.org/paper/ce384aaa9bac2dadf565dd496fdccc8a06665c7d

M. S. Başarslan and F. Kayaalp, “MBi-GRUMCONV: A novel Multi Bi-GRU and Multi CNN-Based deep learning model for social media sentiment analysis,” J Cloud Comp, vol. 12, no. 1, p. 5, Jan. 2023, doi: 10.1186/s13677-022-00386-3.


Dimensions, PlumX, and Google Scholar Metrics

10.33650/jeecom.v7i2.12064


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Ema Utami

 
This work is licensed under a Creative Commons Attribution License (CC BY-SA 4.0)

Journal of Electrical Engineering and Computer (JEECOM)
Published by LP3M Nurul Jadid University, Indonesia, Probolinggo, East Java, Indonesia.