Sentiment Analysis of User Reviews on the NU Online Application Using the Long Short-Term Memory (LSTM) Model

DOI: https://doi.org/10.33650/jeecom.v7i2.12137

Authors (s)


(1)  Atik Muthmainnah   (Universitas Nurul Jadid)  
        Indonesia
(2) * Wahab Sya'roni   (Universitas Nurul Jadid)  
        Indonesia
(3)  Ratri Enggar Pawening   (Universitas Nurul Jadid)  
        Indonesia
(*) Corresponding Author

Abstract


This study aims to analyze user sentiment toward the NU Online application by applying a Long Short-Term Memory (LSTM) model. The research was based on 13,576 user reviews collected from the Google Play Store, which underwent preprocessing, sentiment labeling, and Exploratory Data Analysis (EDA). To ensure balanced classification, undersampling was used, resulting in 6,612 reviews equally divided into positive and negative classes. The text data was processed using tokenization and padding before being input into the LSTM model. Model training involved the use of binary crossentropy, Adam optimizer, EarlyStopping, and ReduceLROnPlateau techniques. The model achieved 93% precision, recall, and F1-score, with low error rates and strong generalization ability. EDA results showed that positive feedback mainly focused on worship features like salat schedules, while negative reviews addressed technical issues such as the azan sound. User review peaks occurred during religious periods and major updates. A Gradio-based web interface was also developed to display results and enable user-friendly access to visual sentiment insights. This implementation proves the practical potential of integrating LSTM with an interactive platform for effective sentiment analysis




Full Text: PDF



References


M. Khamim, “NU Online SuperApp and Strengthening Religious Moderation of Nahdlatul Ulama Based on Literacy in the New Media Era 4.0,” JNUS: Journal of Nahdlatul Ulama Studies, vol. 3, no. 2, pp. 92–113, Jul. 2022, doi: 10.35672/jnus.v3i2.92-113.

M. K. Khoirul Insan, U. Hayati, and O. Nurdiawan, “Analisis Sentimen Aplikasi BRIMO pada Ulasan Pengguna di Google Play Menggunakan Algoritma Naive Bayes,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 1, pp. 478–483, Mar. 2023, doi: 10.36040/jati.v7i1.6373.

M. Musfiroh, A. Tholib, and Z. Arifin, “Analisis Sentimen Terhadap Ulasan Aplikasi Shopee di Google Play Store Menggunakan Metode TF-IDF dan Long Short-Term Memory,” Journal of Electrical Engineering and Computer (JEECOM), vol. 6, no. 2, pp. 371–381, Oct. 2024, doi: 10.33650/jeecom.v6i2.8713.

E. Hairani and I. Nurpalah, “Sentiment Analysis of Muslim Pro ‘Al-Quran Adzan’ on Google Play Using Multinomial Naïve Bayes,” in 2024 12th International Conference on Cyber and IT Service Management (CITSM), IEEE, Oct. 2024, pp. 1–5. doi: 10.1109/CITSM64103.2024.10775862.

D. A. Lusia, G. Anuraga, and F. Rahman, “Sentiment Analysis of NU Online Applications Using Artificial Neural Network,” Southeast Asian Journal of Islamic Education, vol. 06, no. 02, pp. 197–208, 2024, doi: 10.21093/sajie.v6i2.8822.

A. B. Muzayyanah, R. E. Pawening, and Z. Arifin, “Analisis Sentimen pada Ulasan Aplikasi Ehadrah di Google Playstore Menggunakan Support Vector Machine (SVM),” IDEALIS: Indonesia Journal Information System, vol. 7, no. 2, pp. 258–266, Jul. 2024, doi: 10.36080/idealis.v7i2.3250.

M. Rizki, S. Basuki, and Y. Azhar, “Implementasi Deep Learning Menggunakan Arsitektur Long Short Term Memory Untuk Prediksi Curah Hujan Kota Malang,” REPOSITOR, vol. 2, no. 3, pp. 331–338, 2020.

M. Khadapi and V. Maruli Pakpahan, “Analisis Sentimen Berbasis Jaringan LSTM dan BERT terhadap Diskusi Twitter tentang Pemilu 2024,” JUKI: Jurnal Komputer dan Informatika, vol. 6(2), p. 130, Nov. 2024.

R. Kurniawan, I. Ramadhan, and R. Hartono, “Implementasi Sistem Question Answering Menggunakan Metode Long Short Term Memory (LSTM) pada Studi Kasus Bahasa Sunda,” Aug. 2024.

T. R. Mahesh et al., “Transformative Breast Cancer Diagnosis using CNNs with Optimized ReduceLROnPlateau and Early Stopping Enhancements,” International Journal of Computational Intelligence Systems, vol. 17, no. 1, Dec. 2024, doi: 10.1007/s44196-023-00397-1.

R. Ferreira, M. Canesche, P. Jamieson, O. P. V. Neto, and J. A. M. Nacif, “Examples and tutorials on using Google Colab and Gradio to create online interactive student-learning modules,” Computer Applications in Engineering Education, vol. 32, no. 4, pp. 1–17, Feb. 2024, doi: 10.1002/cae.22729.

A. Sawant, S. Phadol, S. Mehere, P. Divekar, S. Khedekar, and R. Dound, “ChatWhiz: Chatbot Built Using Transformers and Gradio Framework,” in Proceedings - 2024 5th International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), Tirunelveli, India: IEEE, May 2024, pp. 454–461. doi: 10.1109/ICICV62344.2024.00077.

L. Yusuf and S. Masripah, “Sentimen Analisis ChatGPT dengan Algoritma Naïve Bayes dan Optimasi PSO,” INTI Nusa Mandiri, vol. 18, no. 1, pp. 59–64, Aug. 2023, doi: 10.33480/inti.v18i1.4230.

D. Wahyuni, N. Fadhillah, and W. Widya Ariestyas, “Long Short-Term Memory dan Lexicon Based Untuk Analisis Sentimen Ulasan Aplikasi TikTok,” Jurnal Ilmiah Komputasi, vol. 23, no. 2, pp. 173–180, Jun. 2024, doi: 10.32409/jikstik.23.2.3579.

B. Wicaksono, V. Rahmayanti, and S. Nastiti, “Analisis Sentimen dalam Opini Publik di Chanel YouTube Indonesia Lawyers Club Tentang Isu Populer dengan Menggunakan Metode LSTM dan Bi-LSTM,” Jurnal Algoritma, vol. 22, pp. 241–251, Dec. 2024, doi: 10.33364/algoritma/v.21-2.1696.

J. Supriyanto, D. Alita, and A. R. Isnain, “Penerapan Algoritma K-Nearest Neighbor (K-NN) Untuk Analisis Sentimen Publik Terhadap Pembelajaran Daring,” Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 4, no. 1, pp. 74–80, Mar. 2023, doi: 10.33365/jatika.v4i1.2468.

W. Ningsih, Rahmaddeni, S. Adrianto, F. Kurniawan, and B. Alfianda, “Analisis Sentimen Pengguna Aplikasi Gen Ai dari Appstore dan Google Play Menggunakan Algoritma C45,” The Indonesian Journal of Computer Science, vol. 13, no. 5, Sep. 2024, doi: 10.33022/ijcs.v13i5.4327.

H. Hidayatullah and Y. Umaidah, “Penerapan Naïve Bayes dengan Optimasi Information Gain dan SMOTE untuk Analisis Sentimen Pengguna Aplikasi ChatGPT,” 2023.

M. Ilmar Rifaldi, Y. Raymond Ramadhan, and I. Jaelani, “Analisis Sentimen Terhadap Aplikasi ChatGPT pada Twitter Menggunakan Algoritma Naïve Bayes,” 2023.

R. Zulfiqri, B. N. Sari, and T. N. Padilah, “Analisis Sentimen Ulasan Pengguna Aplikasi Media Sosial Instagram pada Situs Google Play Store Menggunakan Naïve Bayes Classifier,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 3, Aug. 2024, doi: 10.23960/jitet.v12i3.4995.

M. R. Firdaus, N. Rahaningsih, and R. D. Dana, “Analisis Sentimen Aplikasi Shopee di Google Play Store Menggunakan Klasifikasi Algoritma Naïve Bayes,” Jurnal Informatika dan Rekayasa Perangkat Lunak, pp. 228–237, Mar. 2024.

M. Y. Baihaqi, E. Halawa, R. A. S. Syah, A. Nurrahma, and W. Wijaya, “Emotion Classification in Indonesian Language: A CNN Approach with Hyperband Tuning,” Jurnal Buana Informatika, vol. 14, no. 02, pp. 137–146, Oct. 2023, doi: 10.24002/jbi.v14i02.7558.

M. R. Faisal et al., “A Social Community Sensor for Natural Disaster Monitoring in Indonesia Using Hybrid 2D CNN LSTM,” in Proceedings of the 8th International Conference on Sustainable Information Engineering and Technology, New York, NY, USA: ACM, Oct. 2023, pp. 250–258. doi: 10.1145/3626641.3626932.

R. Waddar, V. Rathod, N. H, S. Chikkamath, N. S. R, and S. V Budihal, “A CNN-based Stutter Detection Using MFCC Features with Binary Cross-Entropy Loss Function,” IEEE International Conference on Contemporary Computing and Communications (InC4), pp. 1–6, Mar. 2024, doi: 10.1109/InC460750.2024.10649122.

M. Fathur, R. Khairul, R. Setya Perdana, and P. Korespondensi, “Arsitektur Sistem Percakapan Otomatis Berbahasa Indonesia dengan Normalisasi Bahasa Informal Menjadi Baku,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 11, pp. 1009–1016, Oct. 2024, doi: 10.25126/jtiik.2024117984.

A. Khumaidi and I. A. Nirmala, Algoritma Long Short Term Memory dengan Hyperparameter Tuning: Prediksi Penjualan Produk. Sleman: Deepublish, 2022.

Z. A. Dwiyanti and C. Prianto, “Prediksi Cuaca Kota Jakarta Menggunakan Metode Random Forest,” Jurnal Tekno Insentif, vol. 17, no. 2, pp. 127–137, Oct. 2023, doi: 10.36787/jti.v17i2.1136.

R. B. Widodo, Machine Learning Metode k-Nearest Neighbors - Klasifikasi Angka Bahasa Isyarat. Malang: Media Nusa Creative, 2022.

A. B. A. Aulia and Alamsyah, “Peningkatan Hiperparameter Framework Deep Learning VGG-16 untuk Pendeteksian Tumor Otak pada Teknologi MRI,” Indonesian Journal of Mathematics and Natural Sciences, vol. 47, no. 2, pp. 99–107, Oct. 2024. [Online]. Available: https://journal.unnes.ac.id/journals/JM/index

R. Safitri, I. Ali, and N. Rahaningsih, “Analisis Sentimen Terhadap Tren Fashion di Media Sosial dengan Metode Support Vector Machine (SVM),” 2024.

M. Haris, A. Suharso, and E. Haodudin Nurkifli, “Analisis Sentimen pada Game eFootball di Google Play Store Menggunakan Algoritma IndoBERT,” 2024.

E. Nandhini and G. Vadivu, “Convolutional Neural Network-Based Multi-Fruit Classification and Quality Grading with a Gradio Interface,” in Proceedings of the 2024 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES 2024), Chennai, India: IEEE, Dec. 2024, pp. 1–17. doi: 10.1109/ICSES63760.2024.10910350.

M. Ar Rachman et al., “Penerapan Black Box Testing untuk Evaluasi Fungsionalitas Website Maggoplast,” Jurnal Mahasiswa Teknik Informatika, vol. 9, no. 1, 2025, doi: https://orcid.org/0000-0002-4061-9241.

A. C. Praniffa, A. Syahri, F. Sandes, U. Fariha, and Q. A. Giansyah, “Pengujian Black Box dan White Box Sistem Informasi Parkir Berbasis Web,” Jurnal Testing dan Implementasi Sistem Informasi, vol. 1, no. 1, pp. 1–16, 2023.


Dimensions, PlumX, and Google Scholar Metrics

10.33650/jeecom.v7i2.12137


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Atik Muthmainnah, Wahab Syaroni, Ratri Enggar Pawening

 
This work is licensed under a Creative Commons Attribution License (CC BY-SA 4.0)

Journal of Electrical Engineering and Computer (JEECOM)
Published by LP3M Nurul Jadid University, Indonesia, Probolinggo, East Java, Indonesia.