Application of Backpropagation Artificial Neural Networks for Optimizing Corn Production Prediction in Karo Regency

DOI: https://doi.org/10.33650/jeecom.v7i2.13065

Authors (s)


(1)  Angga Pratama   (Universitas Malikussaleh Lhokseumawe)  
        Indonesia
(2)  Desvina Yulisda   (Universitas Malikussaleh Lhokseumawe)  
        Indonesia
(3) * Anjasmara Tarigan   (Universitas Malikussaleh Lhokseumawe)  
        Indonesia
(*) Corresponding Author

Abstract


Corn production in Karo Regency, North Sumatra, plays a crucial role in supporting regional food security and the local economy. However, fluctuations in production caused by unpredictable environmental conditions and limited data-driven forecasting methods have made it difficult for policymakers and farmers to plan effectively. This study aims to address this problem by developing a model to predict corn production using the Backpropagation Neural Network (BPNN) method. The study utilized 302 cleaned datasets, with Planted Area and Harvested Area as input variables, and Production as the output variable. The dataset was divided into 70% for training and 30% for testing. Five BPNN architectures (ranging from 2-4-1 to 2-12-1) were tested using three activation functions (Sigmoid, ReLU, and Tanh), with a maximum of 200 iterations and a learning rate of 0.01. The best results were achieved by the 2-12-1 architecture with the Tanh activation function, obtaining an R-squared value of 94.86% and a Mean Squared Error (MSE) of 0.0039. These findings demonstrate that the Backpropagation Neural Network is effective for forecasting corn production and can serve as a valuable decision-support tool for sustainable agricultural planning in the region.


Keywords

Corn; Forecasting; Google Collab; Backpropagation Neural; Network



Full Text: PDF



References


D. Septiadi and M. Nursan, “Analisis Pendapatan Dan Kelayakan Usahatani Jagung di Kabupaten Dompu,” Agroteksos, vol. 31, no. 2, pp. 93–100, 2021.

J. K. Nainggolan, G. H. M. Kapantow, and J. N. K. Dumais, “Faktor-Faktor Yang Mempengaruhi Produksi Jagung Di Kelurahan Tendeki Kecamatan Matuari Kota Bitung,” Agri-Sosioekonomi, vol. 19, no. 2, pp. 899–908, 2023, doi: 10.35791/agrsosek.v19i2.48330.

BPS, “Luas panen, produksi dan rata-rata produksi jagung menurut kabupaten/kota 2020-2022,” Badan Pusat Statistik Provinsi Sumatra Utara, 2023.

R. B. B. B. Suyitno, “IMPLEMENTASI JARINGAN SARAF TIRUAN BACKPROPAGATION UNTUK PREDIKSI PRODUKSI JAGUNG ( Studi Kasus : Provinsi Daerah Istimewa Yogyakarta ) ( Studi Kasus : Provinsi Daerah Istimewa Yogyakarta ),” 2020.

N. H. Harahap, Muthmainnah, and D. Yulisda, “SISTEM INFORMASI FORECASTING PENJUALAN AYAM BROILER MENGGUNAKAN METODE TREND MOMENT BERBASIS WEB,” vol. 4, no. 3, 2023.

M. D. Wahyudi, “Penerapan Data Mining Dengan Algoritma C4. 5 Dalam Prediksi Penjualan Buku,” J. Teknorama (Informatika dan …, vol. 1, no. 1, pp. 1–6, 2023.

A. A. Firdaus, N. Iksan, D. N. Sadiah, L. Sagita, and D. Setiawan, “Penerapan Algoritma Apriori untuk Prediksi Kebutuhan Suku Cadang Mobil,” J. Sist. dan Teknol. Inf., vol. 9, no. 1, p. 13, 2021, doi: 10.26418/justin.v9i1.41151.

F. Damayanti, S. Sundari, and R. Liza, “Analisis Laju Pembelajaran Pada Backpropagation Dalam Memprediksi Bencana Alam Akibat Cuaca Ekstrim,” J. Unitek, vol. 16, no. 1, pp. 61–70, 2023, doi: 10.52072/unitek.v16i1.553.

N. Yanti, A. Setiawan, and S. Defit, “Analisa Dini Gangguan Disleksia Anak Sekolah dengan Metode Backpropagation,” J. Edukasi dan Penelit. Inform., vol. 9, no. 2, p. 168, 2023, doi: 10.26418/jp.v9i2.64588.

H. I. Fathoni, B. Rahayudi, and D. E. Ratnawati, “Prediksi Hasil Panen Udang Vaname menggunakan Algoritme Backpropagation Neural Network,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 8, pp. 3587–3595, 2022.

M. Thoriq, “Peramalan Jumlah Permintaan Produksi Menggunakan Jaringan Saraf Tiruan Algoritma Backpropagation,” J. Inf. dan Teknol., vol. 4, pp. 27–32, 2022, doi: 10.37034/jidt.v4i1.178.

Y. F. Tarigan, B. H. Hayadi, and A. H. Nasyuha, “Implementasi Jaringan Saraf Tiruan Pengenalan Pola Aksara Batak Simalungun Menggunakan Kohonen Self Organizing Map,” J. Comput. Syst. Informatics, vol. 3, no. 4, pp. 392–404, 2022, doi: 10.47065/josyc.v3i4.1991.

Muhammad Varriel Avenazh Nizar, Sirajuddin Hawari, and Ahmad Nur Ihsan Purwanto, “Membandingan Metode Jaringan Syaraf Tiruan Backpropagation Dan Learning Vector Quantization Dengan Opencv Pada Pengenalan Wajah,” Jural Ris. Rumpun Ilmu Tek., vol. 1, no. 1, pp. 107–114, 2022, doi: 10.55606/jurritek.v1i1.593.

H. Wadi, Jaringan Saraf Tiruan Backpropagation menggunakan Python GUI: Langkah demi langkah memahami dan mengimplementasikan Jaringan Saraf Tiruan BAckpropagation untuk Prediksi data penjualan air minum dalam kemasan, Edisi Pert. TR Publisher, 2020.

N. F. Hasan, K. Kusrini, and H. Al Fatta, “Peramalan Jumlah Penjualan Menggunakan Jaringan Syaraf Tiruan Backpropagation Pada Perusahaan Air Minum Dalam Kemasan,” J. Tek. Inform. dan Sist. Inf., vol. 5, no. 2, pp. 179–188, 2019, doi: 10.28932/jutisi.v5i2.1607.


Dimensions, PlumX, and Google Scholar Metrics

10.33650/jeecom.v7i2.13065


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Anjasmara Tarigan

 
This work is licensed under a Creative Commons Attribution License (CC BY-SA 4.0)

Journal of Electrical Engineering and Computer (JEECOM)
Published by LP3M Nurul Jadid University, Indonesia, Probolinggo, East Java, Indonesia.