Identifikasi Penulis Berdasarkan Pola Tulisan Tangan Menggunakan Convolutional Autoencoder dan KNN

DOI: https://doi.org/10.33650/jeecom.v3i1.1548

Authors (s)


(1) * Muhammad Turmudzi   (Institut Sains dan Teknologi Terpadu Surabaya)  
        Indonesia
(2)  Endang Setyati   (Institut Sains dan Teknologi Terpadu Surabaya)  
        Indonesia
(*) Corresponding Author

Abstract


Identifikasi tulisan tangan dilakukan dengan beberapa tahapan, yaitu Akuisisi Citra dengan memanfaatkan mesin scanner dengan kualitas gambar 300dpi, Segmentasi dilakukan dengan metode threshold dan seleksi kontour dari gambar, penggabungan gambar hasil segmentasi, proses citra dari hasil segmentasi ke dalam Convolutional Autoencoder yang hasilnya diteruskan ke Transfer Learning (Lazy Learning) dalam hal ini penulis menggunakan metode KNN untuk mencocokkan tulisan tangan dari penulis. Penelitian dilakukan dengan menggunakan 100 dataset dari 20 penulis yang masing-masing penulis menulis 5 kali. Dataset yang digunakan di ujicoba pertama mengguanakan penggalan kalimat pada tulisan tangan yaitu Judul dari Puisi Chairil Anwar. Ujicoba dilakukan dengan membandingkan Training menggunakan Convolutional Autoencoder dan tanpa menggunakan Convolutional Autoencoder. Hasil dari ujicoba dengan Convolutional Autoencoder memperoleh nilai akurasi sebesar 89% dan tanpa menggunakan Convolutional Autoencoder, didapatkan nilai akurasi sebesar 88%. Pada ujicoba menggunakan tulisan tangan full, diperoleh hasil akurasi rata-rata 50% jauh di bawah hipotesa sehingga tidak cocok untuk diterapkan pada identifikasi tulisan tangan. Perlu ada nya pembatasan tulisan tangan yang akan digunakan sebagai dataset dalam identifikasi tulisan tangan


Keywords

Convolutional Autoencoder, KNN, Identifikasi Tulisan tangan



Full Text: PDF



Article View

Abstract views : 317 times | PDF files viewed : 205 times

Dimensions, PlumX, and Google Scholar Metrics

10.33650/jeecom.v3i1.1548


Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Muhammad Turmudzi, Endang Setyati

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License
 
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Journal of Electrical Engineering and Computer (JEECOM)
Published by LP3M Nurul Jadid University, Indonesia, Probolinggo, East Java, Indonesia.