Convolutional Neural Network untuk Klasifikasi Batik Tenun Ikat Bandar Berdasarkan Fitur Warna dan Tekstur

DOI: https://doi.org/10.33650/jeecom.v6i1.8060

Authors (s)


(1)  Mohammad Atif Faiz Muthrofin   (Universitas Islam Kadiri)  
        Indonesia
(2) * Danang Erwanto   (Universitas Islam Kadiri)  
        Indonesia
(3)  Iska Yanuartanti   (Universitas Islam Kadiri)  
        Indonesia
(*) Corresponding Author

Abstract


Tenun Ikat Bandar Kediri adalah salah satu jenis batik berupa kain yang ditenun dan diberi suatu pola dan motif pada teksturnya menggunakan suatu mesin tenun kayu tradisional. Pola dan motif pada batik tenun ikat sangat bervariasi tergantung pada rumah produksinya. Biasanya setiap rimah produksi memiliki suatu ciri khas khusus pada pola dan motifnya. Banyaknya pola dan motif tersebut akan menjadikan masyarakat sulit mengenali dan mempelajari ciri visual Tenun Ikat tersebut sehingga bila ada suatu sistem yang mempelajari pola dan motif tersebut maka akan sangat membantu masyarakat. Sistem klasifikasi yang dibuat pada penelitian ini mengimplementasikan algoritma Convolutional Neural Network (CNN) dengan ekstraksi tekstur Tenun menggunakan fitur Gray Level Cooccurence Matrix (GLCM) dan ekstraksi warna menggunakan fitur Color Co-occourrence Matrix (CCM). Pada penelitian ini menggunakan dataset sebanyak 125 citra gambar dari 5 motif batik pada suatu rumah produksi tenun ikat dengan proporsi setiap pola yang seimbang. Hasil dari penelitian ini menunjukkan bahwa rata-rata akurasi dari setiap pengujian mencapai angka 0,94, ini menunjukkan bahwa metode yang dimaksudkan telah dapat melakukan klasifikasi dengan baik.



Keywords

Tenun Ikat; CNN; GLCM; CCM; Cross Validation



Full Text: PDF



Article View

Abstract views : 56 times | PDF files viewed : 25 times

Dimensions, PlumX, and Google Scholar Metrics

10.33650/jeecom.v6i1.8060


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Mohammad Atif Faiz Muthrofin, Danang Erwanto, Iska Yanuartanti

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License
 
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Journal of Electrical Engineering and Computer (JEECOM)
Published by LP3M Nurul Jadid University, Indonesia, Probolinggo, East Java, Indonesia.