Design and Construction of a 500–800 MHz Square Spiral Dipole Microstrip Antenna Structure

Arif Milando Setiawan
DOI: https://doi.org/10.33650/jeecom.v6i2.9575



Abstract

An antenna can be used to detect an object. The dimensions of the antenna also affect the working frequency, the smaller dimensions, the higher the working frequency and the closer the antenna range to radiate waves. Therefore, a microstrip antenna with a small dimension size is needed, but the antenna radiation distance capability for radar systems still needs to be reduced. A microstrip dipole antenna with a spiral shape, measuring 5 cm, was meticulously designed and fabricated. The square dipole antenna, featuring an optimal design with the arm structure rotated in a clockwise direction, achieved an impressive return loss of -27.54dB with a VSWR of 1.83. The engineering refinement of the antenna design involved the addition of a square shape, which led to a significant and impressive improvement in performance. The second spiral antenna, operating at a frequency of 805MHz with an impressive bandwidth of 57MHz, exhibited a remarkable return loss of -30.83dB and a VSWR of 1.07.


Keywords

Microstrip; Antenna; Spiral; Dipole.

Full Text:

PDF

References

P. Patnaik, “Design and validation of slot spiral antenna for stepped frequency ground penetrating radar,” 2016 17th Int. Radar Symp., no. 1, pp. 1–4, 2016, doi: 10.1109/IRS.2016.7497334.

K. Nakajima, K. Kunishige, F. Kuroki, Y. Hamada, and M. Numoto, “Low-profile and Small-sized Spiral-shaped Microstrip Line Antenna with Multi-band Operation in UHF Frequency Band,” pp. 59–61, 2017.

R. Garg. 2001, ”Microstrip Antena Design Handbook”, ISBN:0-89006-5136, Artech House.Inc:Londo.

Constantine A. Balanis. 2005. Antenna Theory: Analysis and Design 3rd Edition. US: John Wiley & Sons.

R. G. Dan, C. Elia, A. Tarigan, and A. H. Rambe, “Rancang Bangun Antena Mikrostrip Slot Dengan Pencatuan Proximity Coupled,” no. L, pp. 112–117.

A. Firdausi, G. Hendrantoro, E. Setijadi, and M. Alaydrus, “Analysis and Improvement of Bandwidth and Gain of Millimeter-Wave Microstrip Franklin Antenna With Proximity-Coupled Feed,” IEEE Access, vol. 11, no. September, pp. 104723–104734, 2023, doi: 10.1109/ACCESS.2023.3317999.

Y. K. Gultom, S. Alam, and I. Surjati, “Microstip Antenna Reflection Coefficient with X Slot Addition Method for 5G Connection,” J. Informatics Telecommun. Eng., vol. 5, no. 2, pp. 532–544, 2022, doi: 10.31289/jite.v5i2.5944.

H. Hendra and A. H. Rambe, “Rancang Bangun Antena Susun Mikrostrip Patch Dengan Penggunaan Stub,” pp. 65–70, 2004.

R. Huang et al., “A 0.1-4.0-GHz Inductorless Direct-Sequence Spread-Spectrum-Based Ground-Penetrating Radar System-on-Chip,” IEEE Microw. Wirel. Components Lett., vol. 31, no. 6, pp. 827–830, 2021, doi: 10.1109/LMWC.2021.3067211.

G. Jiang, X. Zhou, J. Li, and H. Chen, “A Cable-Mapping Algorithm Based on Ground-Penetrating Radar,” IEEE Geosci. Remote Sens. Lett., vol. 16, no. 10, pp. 1630–1634, 2019, doi: 10.1109/LGRS.2019.2902890.

F. Lombardi, H. D. Griffiths, M. Lualdi, and A. Balleri, “Characterization of the Internal Structure of Landmines Using Ground-Penetrating Radar,” IEEE Geosci. Remote Sens. Lett., vol. 18, no. 2, pp. 266–270, 2021, doi: 10.1109/LGRS.2020.2970249.

Z. Mohammad and A. M. Chrysler, “Airborne Reflector-Based Ground Penetrating Radar for Environmental and Archaeological Studies,” IEEE Open J. Antennas Propag., vol. 4, no. June, pp. 748–753, 2023, doi: 10.1109/OJAP.2023.3295849.

Q. H. Ramadhamy, E. Ali, and A. A. Pramudita, “Surface Clutter Reduction for Ground Penetrating Radar,” Jmecs, vol. 8, no. 2, p. 7, 2021, doi: 10.25124/jmecs.v8i2.2869.

Z. A. Sanaz, S. Alam, and I. Surjati, “Perancangan Antena MIMO Microstrip Rectangular Array dengan Slot U,” J. Telemat., vol. 16, no. 2, pp. 40–45, 2022, doi: 10.61769/telematika.v16i2.394.

R. A. S. Setiyanto, “Pengaplikasian Antena Vivaldi Antipodal untuk Ground Penetrating Radar dengan Menggunakan Metode B - Scan,” J. Tek. Elektro, vol. 11, pp. 278–287, 2022.

F. Solehudin, Z. A. Sanaz, S. Alam, L. Sari, and I. Surjati, “Design of 2x1 MIMO Microstrip Antenna Using Slit and Inset Technique For 5G Communication,” J. Informatics Telecommun. Eng., vol. 5, no. 1, pp. 31–44, 2021, doi: 10.31289/jite.v5i1.5129.

I. Surjati et al., “Dual-Band MIMO Circular Patch Microstrip Antenna (CPMA) with Low Mutual Coupling for 5G Communication System,” J. Nano- Electron. Phys., vol. 16, no. 2, pp. 1–5, 2024, doi: 10.21272/jnep.16(2).02009.

J. Zhang, S. Ye, Y. Lin, X. Liu, and G. Fang, “A Modified Model for Quasi-Monostatic Ground Penetrating Radar,” IEEE Geosci. Remote Sens. Lett., vol. 17, no. 3, pp. 406–410, 2020, doi: 10.1109/LGRS.2019.2921433.

P. Mitesh, S. and K. Shailesh, “Review of Broadband Techniques for Microstrip Patch Antenna .,” pp. 7519–7523, 2014.

A. Zulqarnain, R. Baber, and S. Saeed, “Square Spiral Microstrip Patch Antenna,” 2019 Int. Conf. Electr. Commun. Comput. Eng., no. July, pp. 1–5, 2019.


Dimensions, PlumX, and Google Scholar Metrics

10.33650/jeecom.v6i2.9575


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Arif Milando Setiawan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License
 
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Journal of Electrical Engineering and Computer (JEECOM)
Published by LP3M Nurul Jadid University, Indonesia, Probolinggo, East Java, Indonesia.