Klasifikasi Penyakit Daun Sawi Menggunakan VGG19 Berbasis Citra Digital

DOI: https://doi.org/10.33650/trilogi.v6i3.12106

Authors (s)


(1) * Wahab Sya'roni   (Universitas Nurul Jadid)  
        Indonesia
(2)  Yahya Auliya' Abdillah   (Universitas Nurul Jadid)  
        Indonesia
(3)  Samsul Arifin   (Universitas Nurul Jadid)  
        Indonesia
(4)  Rayhan Hibatullah   (Universitas Nurul Jadid)  
        Indonesia
(*) Corresponding Author

Abstract


Agricultural productivity is greatly influenced by plant health, including mustard greens (Brassica rapa), which are prone to leaf diseases and have high economic value. This study aims to develop a digital image-based classification system for mustard leaf diseases using a deep learning approach, particularly the Convolutional Neural Network (CNN) VGG19 architecture, and to compare its performance with ResNet50 and VGG16 models. The dataset used consists of 999 images divided into two classes: healthy mustard leaves and diseased mustard leaves. The images were processed through preprocessing steps (resized to 224×224 and normalized), then split into training, validation, and testing sets (80:10:10). The VGG19 architecture was customized with additional layers such as Global Average Pooling and Dense layers, and trained for 50 epochs with a configuration of 32 filters, a dropout rate of 0.5, and a learning rate of 0.0003. The results showed that the VGG19 model achieved the highest validation accuracy of 96%, followed by VGG16 with 95%, and ResNet50 with 74%. Evaluation using a confusion matrix demonstrated that VGG19 exhibited the most stable and accurate classification performance in recognizing both classes. These findings reinforce the potential of VGG19 for developing automated and real-time plant disease detection systems. Furthermore, this study opens up opportunities for integration into agricultural Internet of Things (IoT) systems for continuous plant health monitoring, thereby assisting farmers in making faster and more accurate preventive decisions.



Keywords

CNN VGG19; Deep Learning; Disease Classification; Mustard Leaves.







References


Abd Algani, Yousef Methkal, Orlando Juan Marquez Caro, Liz Maribel Robladillo Bravo, Chamandeep Kaur, Mohammed Saleh Al Ansari, dan B. Kiran Bala. 2023. “Leaf disease identification and classification using optimized deep learning.” Measurement: Sensors 25(September 2022):100643. doi: 10.1016/j.measen.2022.100643.

Deviana, Lyla Putri, dan Puja Restu Adinda. 2024. “Sistem Monitoring Pertumbuhan Tanaman Sawi Menggunakan Artificial Intellegence Pada Aquaponik.” 9(3):306–14. doi: 10.30591/jpit.v9i3.5897.

Dwianto, Sigit, Farhan Naufal Mubarok, Dzaki Satriatama, Tinuk Agustin, dan Sukoharjo Indonesia. 2024. “PENERAPAN CONVOLUTIONAL NEURAL NETWORK ( CNN ) DALAM.” (November):270–80.

Hafidurrohman, M., dan K. Kusrini. 2025. “Classification Of Mustard Leaf Diseases Using Convolutional Neural Network Architecture.” Journal of Electrical Engineering and Computer (JEECOM) 7(1):22–30. doi: 10.33650/jeecom.v7i1.10779.

Hanifah, Siti, Nur Apriliani, Eddy Tri Sucianto, dan Endang Sri Purwati. 2020. “Identifikasi Jamur Penyebab Penyakit pada Tanaman Sawi Putih ( Brassica rapa L .) dan Persentase Penyakitnya di Desa Serang Kecamatan Karangreja, Kabupaten Purbalingga.” Bio Eksakta: Jurnal Ilmiah Biologi Unsoed 2(2020):487–501.

Lesmana, Alang Mulya, Ronna Putri Fadhillah, dan Chaerur Rozikin. 2022. “Identifikasi Penyakit pada Citra Daun Kentang Menggunakan Convolutional Neural Network (CNN).” Jurnal Sains dan Informatika 8(1):21–30. doi: 10.34128/jsi.v8i1.377.

Lu, Jinzhu, Lijuan Tan, dan Huanyu Jiang. 2021. “Review on convolutional neural network (CNN) applied to plant leaf disease classification.” Agriculture (Switzerland) 11(8).

Lukman Priyambodo, Hanin Latif Fuadi, Naura Nazhifah, Ibrohim Huzaimi, Angga Bagus Prawira, Tasya Enjelika Saputri, Mas Aly Afandi, Eka Setia Nugraha, Agung Wicaksono, dan Petrus Kerowe Goran. 2022. “Klasifikasi Kematangan Tanaman Hidroponik Pakcoy Menggunakan Metode SVM.” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 6(1):153–60. doi: 10.29207/resti.v6i1.3828.

Nazalia, Cendekia Luthfieta, Pritasari Palupiningsih, Budi Prayitno, dan Yudhi Setyo Purwanto. 2023. “Implementation of Convolutional Neural Network Algorithm to Pest Detection in Caisim.” ICCoSITE 2023 - International Conference on Computer Science, Information Technology and Engineering: Digital Transformation Strategy in Facing the VUCA and TUNA Era 609–14. doi: 10.1109/ICCoSITE57641.2023.10127792.

Palopo, Biologi Sman. 2022. “batang dan buah . Daun tanaman yang.” 12:42–50.

Sood, Akshit, Pradeepta Kumar Sarangi, Ashok Kumar Sahoo, Lekha Rani, Karan Bajaj, dan Alok Kumar Agrawal. 2023. “AI-Driven Mustard Disease Identification: A Multiclass and Binary Classification Approach for Advanced Crop Health Monitoring.” Proceedings - International Conference on Technological Advancements in Computational Sciences, ICTACS 2023 256–61. doi: 10.1109/ICTACS59847.2023.10390082.

Syech Ahmad, Mochamad Taufik Ali, dan Bambang Sugiarto. 2023. “Implementasi Convolutional Neural Network (CNN) untuk Klasifikasi Ikan Cupang Berbasis Mobile.” Digital Transformation Technology 3(2):712–23. doi: 10.47709/digitech.v3i2.3245.

Tian, L. G., C. Liu, Y. Liu, M. Li, J. Y. Zhang, dan H. L. Duan. 2020. “Research on plant diseases and insect pests identification based on CNN.” IOP Conference Series: Earth and Environmental Science 594(1). doi: 10.1088/1755-1315/594/1/012009.

Trihardianingsih, Liana, Andi Sunyoto, dan Tonny Hidayat. 2023. “Classification of Tea Leaf Diseases Based on ResNet-50 and Inception V3.” Sinkron 8(3):1564–73. doi: 10.33395/sinkron.v8i3.12604.

Ulfi, Meitra, dan Tengku Savira Putri Ayu. 2024. Implementasi Deep Learning dengan Convolutional Neural Network untuk Tingkat Akurasi Citra Image Hama Sawi Hijau Menggunakan Google Colab. Vol. 10.


Dimensions, PlumX, and Google Scholar Metrics

10.33650/trilogi.v6i3.12106


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Wahab Sya'roni, Yahya Auliya' Abdillah, Samsul Arifin, Rayhan Hibatullah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This ejournal system and its contents are licensed under

a Creative Commons Attribution-ShareAlike 4.0 International License