Identifikasi Faktor Literasi Digital Siswa Pasca Pelatihan dengan Algoritma Random Forest

DOI: https://doi.org/10.33650/trilogi.v6i4.13247

Authors (s)


(1) * Abu Tholib   (Universitas Nurul Jadid)  
        Indonesia
(2)  Melany Putri Dianita   (Universitas Nurul Jadid)  
        Indonesia
(3)  Alfiani Nur Sakinah   (Universitas Nurul Jadid)  
        Indonesia
(4)  Khaerun Nisak   (Universitas Nurul Jadid)  
        Indonesia
(5)  Siska Siska   (Universitas Nurul Jadid)  
        Indonesia
(*) Corresponding Author

Abstract


Digital literacy is a foundational competence for junior high school students as learning increasingly relies on digital platforms; however, empirical evidence identifying which measurable factors most strongly drive post-training improvement remains limited. This study aims to determine key predictors of digital literacy gains after structured training and to develop a predictive model that classifies improvement into three levels (low, moderate, high). Data were collected from 200 junior high school students who participated in a structured program in digital marketing and graphic design, comprising pre-test and post-test scores, participation indicators, learning motivation, and frequency of digital tool use. After data cleaning, transformation, and feature encoding, a Random Forest classifier was trained to model improvement categories. Model performance was assessed using an 80:20 train–test split and stratified five-fold cross-validation, reporting accuracy, precision, recall, F1-score, and confusion matrix analysis. The model achieved 78% accuracy and exhibited its strongest and most stable performance in the high-improvement category, while minority categories showed reduced sensitivity, suggesting the influence of class imbalance.



Keywords

Digital literacy; Data mining; Random Forest.



Full Text: PDF



References


Abdullatif, S., Nawai, F. A., & Arifin, A. (2023). Pengelolaan Digitalisasi Sekolah Pada Sekolah Penggerak. Pedagogika, 46–63. https://doi.org/10.37411/pedagogika.v14i1.2238

Ardiansyah, A. (2023). Pendampingan Perancangan Chatbot Sebagai Media Interaktif Dalam Menghadapi Tantangan Era Digitalisasi. Lamahu: Jurnal Pengabdian Masyarakat Terintegrasi, 2(1), 44–55. https://doi.org/10.34312/ljpmt.v2i1.18078

Huda, M., Ronaldo, R. A., Hasanah, L. U., & Tholib, A. (2023). PENGENALAN CANDI VIRTUAL NUSANTARA DALAM KOLABORASI KEARIFAN LOKAL INDONESIA DAN ERA DIGITAL BERBASIS VIRTUAL REALITY. Prosiding Pekan Ilmiah Pelajar (PILAR), 3, 291–301.

Kim, D., Park, C., Oh, J., & Yu, H. (2017). Deep hybrid recommender systems via exploiting document context and statistics of items. Information Sciences, 417, 72–87. https://doi.org/10.1016/j.ins.2017.06.026

Lenz, R. (2019). Big data: Ethics and law. Available at SSRN 3459004. https://doi.org/10.2139/ssrn.3459004

Marpaung, S. F., Siregar, H. Z., Abdillah, F., Fadilla, H., & Manurung, M. A. P. (2023). Dampak Transformasi Digital terhadap Inovasi Model Bisnis dalam Start-up Teknologi. Innovative: Journal Of Social Science Research, 3(3), 6111–6122.

Nofriansyah, D., Kom, S., & Kom, M. (2015). Konsep data mining vs sistem pendukung keputusan. Deepublish.

Pratama, S., Ashari, M., Zulkarnain, S. A. B., & Sabrina, E. (2025). The Importance of Digital Literacy in the World of Education: Learning Transformation in the Digital Era Pentingnya Literasi Digital dalam Dunia Pendidikan: Transformasi Pembelajaran di Era Digital. JKIP: Jurnal Kajian Ilmu Pendidikan, 6(2), 554–561.

Pratiwi, S. N., Wastuti, S. N. Y., & Jamila, J. (2022). Kepemimpinan Transformasional dalam Menghadapi Era Digitalisasi. Biblio Couns: Jurnal Kajian Konseling Dan Pendidikan, 5(1), 101–108. https://doi.org/10.30596/bibliocouns.v5i1.9886

Putri, V. V., Tholib, A., & Novia, C. (2023). DETEKSI KAGGLE BOT ACCOUNT MENGGUNAKAN DEEP NEURAL NETWORKS. NJCA (Nusantara Journal of Computers and Its Applications), 8(1), 13–21. https://doi.org/10.36564/njca.v8i1.304

Rianto, M. E., Maulidiansyah, M., & Tholib, A. (2024). Implementasi AI Chatbot Sebagai Support Assistant Website Universitas Nurul Jadid Menggunakan Algoritma Long Short-Term Memory (LSTM). Journal of Electrical Engineering and Computer (JEECOM), 6(1), 267–275. https://doi.org/10.33650/jeecom.v6i1.8556

Ritonga, I. N. (2024). Dampak perkembangan penelitian literasi digital menggunakan analisis bibliometrik. Djtechno: Jurnal Teknologi Informasi, 5(2). https://doi.org/10.46576/djtechno.v5i2.4616

Saifudin, I., Widiyaningtyas, T., Zaeni, I. A. E., & Aminuddin, A. (2025). SVD-GoRank: Recommender System Algorithm using SVD and Gower’s Ranking. IEEE Access. https://doi.org/10.1109/ACCESS.2025.3533558

Sankepally, S. R., Kosaraju, N., & Rao, K. M. (2022). Data imputation techniques: an empirical study using chronic kidney disease and life expectancy datasets. 2022 International Conference on Innovative Trends in Information Technology (ICITIIT), 1–7. https://doi.org/10.1109/ICITIIT54346.2022.9744211

Tholib, A. (2022). RANCANG BANGUN APLIKASI AUGMENTED REALITY KAIFATUS SHOLLI BERBASIS ANDROID. NJCA (Nusantara Journal of Computers and Its Applications), 7(2), 49–58.

Tholib, A. (2023). Buku Refrensi Implementasi Algoritma Machine Learning Berbasis Web dengan Framework Streamlit.

Tholib, A. (2025). Menguasai Sistem Rekomendasi di Machine Learning: Teori dan Praktik dengan Bahasa Pemrograman Python. Kaizen Media Publishing.

Halimi, A. (2024). GAME EDUKASI MATEMATIKA UNTUK MENINGKATKAN PENALARAN SISWA BERBASIS ANDROID. Insand Comtech: Information Science and Computer Technology Journal, 9(1), 23–29. https://doi.org/10.53712/jic.v9i1.2297

Zain, A. N. W., Muafi, M., & Tholib, A. (2024). Klasifikasi Data Mining di Tingkat Kepuasan Mahasiswa Terhadap Pelayanan Sistem Informasi Fakultas Teknik Universitas Nurul Jadid. SKANIKA: Sistem Komputer Dan Teknik Informatika, 7(2), 204–213. https://doi.org/10.36080/skanika.v7i2.3200


Dimensions, PlumX, and Google Scholar Metrics

10.33650/trilogi.v6i4.13247


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Abu Tholib, Melany Putri Dianita, Alfiani Nur Sakinah, Khaerun Nisak, Siska Siska

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This ejournal system and its contents are licensed under

a Creative Commons Attribution-ShareAlike 4.0 International License