MANAJEMEN KLUSTERISASI PASAR: Penerapan Segmentasi Pelanggan Berbasis Metode Self-Organizing Map (SOM) di CV Karunia Probolinggo

Abu Tholib
DOI: https://doi.org/10.33650/trilogi.v1i2.1897



Abstract

As one of the distributors engaged in the sale and distribution of cosmetics, CV Karunia is in charge of serving customers who have placed an order, so that each order delivery must be recorded properly. By grouping customers according to regions and orders, it will be easier for distributors to know which regions and whose customers have the largest number of orders. Therefore, CV Karunia must have a customer mapping strategy, for example by using the SOM (Self Organizing Maps) method which aims to facilitate marketing efforts and customer grouping according to customer desires and habits, in order to obtain maximum results. Through this SOM method, customer decision making and optimization of the customer service process can be done well.



Keywords

customer segmentation; metode SOM; marketing strategi

Full Text:

PDF

References

Adiana, B. E., Soesanti, I., & Permanasari, A. E. (2018). Analisis segmentasi pelanggan menggunakan kombinasi RFM model dan teknik clustering. Jurnal Terapan Teknologi Informasi, 2(1), 23-32.

Adji Magfirah, t. b. (2015). Menggunakan Data Mining Sebagai Customer Pada Bank Untuk Meningkatkan Customer Relationship management (CRM) dengan Metode Klasifikasi (Algoritma J-48, Zero-R dan Naive Bayes). Prosiding SNST, 11.

Ahsan, N. F. (2010). Clustering Data Mahasiswa menggunakan SOM untuk menentukan Startegi promosi universitas kanjuruhan Malang. Ilkom 207, 15-17.

Asep Saefullah, M. (2106). Penerapan Metode Klasifikasi Data MIning Untuk prediksi Kelulusan Tepat waktu. STMIK Jurnal, 14-17.

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000). CRISP-DM 1.0: Step-by-step data mining guide. SPSS inc, 9, 13.

Faizah, I., Rachma, N., & Hufron, M. (2019). Pengaruh Celebrity Endorser terhadap Prurcahe Intention melalui Brand Image sebagai Variabel Intervening pada pengguna kosmetik Wardah di Toko Kurnia probolinggo. Jurnal Ilmiah Riset Manajemen, 8(03).

Istiana, M. I. (2016). Segemntasi Pelanggan Menggunakan Algoritma K-Means Sebagai Strategi Pemasaran pada LAROIBA Seluler. Jurnal 12903, 12-13.

Jamal, J., & Yanto, D. (2019). Analisis RFM dan Algoritma K-Means untuk Clustering Loyalitas Customer. Energy, 9(1).

Karomi, M. A. (2016). Meningkatkan hasil Segmentasi Pelanggan Menggunakan Algoritma Fuzzy C-Means dan Outler Removal Clusstering. STMIK, 2-11. Februari 2007.

Kuo, R. J., Ho, L. M., & Hu, C. M. (2002). Integration of self-organizing feature map and K-means algorithm for market segmentation. Computers & Operations Research, 29(11), 1475-1493.

Shin, H. W., & Sohn, S. Y. (2004). Segmentation of stock trading customers according to potential value. Expert systems with applications, 27(1), 27-33.

Yuliana, R. (2013). Analisis strategi pemasaran pada produk sepeda motor matik berupa segmentasi, targeting, dan positioning serta pengaruhnya terhadap keputusan pembelian konsumen di Semarang. Jurnal STIE Semarang (Edisi Elektronik), 5(2), 79-92.

Zeniarja, J., & Luthfiarta, A. (2015). Prediksi Churn dan Segmentasi Pelanggan Menggunakan Backpropagation Neural Network Berbasis Evolution Strategies. Techno. Com, 14(1), 49-54.


Dimensions, PlumX, and Google Scholar Metrics

10.33650/trilogi.v1i2.1897


Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Abu Tholib

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This ejournal system and its contents are licensed under

a Creative Commons Attribution-ShareAlike 4.0 International License