MACHINE LEARNING FOR CLASSIFICATION OF IKM PROGRAMS AT THE DEPARTMENT OF INDUSTRY AND TRADE OF LANGKAT REGENCY
AbstractThis research attempts to address these challenges by constructing a classification model using the Naive Bayes algorithm. Naive Bayes is a statistical algorithm that can be employed to predict the probability of membership in a class based on the available data. This method can assist the Department of Industry and Trade of Langkat Regency in selecting targeted programs and identifying SMEs (Small and Medium Enterprises) with potential success. The research will involve the collection and analysis of data regarding SMEs in Langkat Regency, including information about the industry type, geographic location, and business formality status. This data will be utilized to train the Naive Bayes classification model to predict the potential success of programs offered by the Department of Trade and Industry. Consequently, it is anticipated that this model can aid in more effective and efficient decision-making in the management of SME programs
|
Full Text:
References
Agarwal, S., Jha, B., Kumar, T., Kumar, M., & Ranjan, P. (2019). Hybrid of Naive Bayes and Gaussian Naive Bayes for Classification: A Map Reduce Approach. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8(6), 266–268.
Barus, S. P. (2021). Implementation of Naïve Bayes Classifier-based Machine Learning to Predict and Classify New Students at Matana University. Journal of Physics: Conference Series, 1842(1). https://doi.org/10.1088/1742-6596/1842/1/012008
Fitrianah, D., Dwiasnati, S., H, H. H., Baihaqi, K. A., Komputer, I., Informatika, T., & Buana, U. M. (2021). Penerapan Metode Machine Learning untuk Prediksi Nasabah Potensial menggunakan Algoritma Klasifikasi Naïve Bayes. 14(2), 92–99.
Hayami, R., Soni, & Gunawan, I. (2022). Klasifikasi Jamur Menggunakan Algoritma Naïve Bayes. Jurnal CoSciTech (Computer Science and Information Technology), 3(1), 28–33. https://doi.org/10.37859/coscitech.v3i1.3685
Huriah, D. A., Nuris, N. D., Usaha, B., Mining, D., Naive, A., & Dalam, B. (2023). Klasifikasi penerima bantuan sosial umkm menggunakan algoritma naïve bayes. Jurnal Mahasiswa Teknik Informatika, 7(1), 360–365.
Ismail, M., Hassan, N., & Saleh Bafjaish, S. (2020). Journal of Soft Computing and Data Mining Comparative Analysis of Naive Bayesian Techniques in Health-Related for Classification Task. Journal of Soft Computing and Data Mining, 1(2), 1–10.http://penerbit.uthm.edu.my/ojs/index.php/jscdm
Osisanwo, F. Y., Akinsola, J. E. T., Awodele, O., Hinmikaiye, J. O., Olakanmi, O., & Akinjobi, J. (2017). Supervised Machine Learning Algorithms : Classification and Comparison. 48(3), 128–138.
Pratama, R., & Izman Herdiansyah, M. (2023). Prediksi Customer Retention Perusahaan Asuransi Menggunakan Machine Learning. Sistem Informasi Dan Komputer), 12, 96–104.
Ratnasari, A., & Kirwani, D. H. (2015). Peranan Industri Kecil Menengah (Ikm) Dalam Penyerapan Tenaga Kerja Di Kabupaten Ponorogo. Jurnal Pendidikan Ekonomi, 1(3), 11–17.https://ejournal.unesa.ac.id/index.php/jupe/article/view/3625
Roihan, A., Sunarya, P. A., & Rafika, A. S. (2020). Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper. IJCIT (Indonesian Journal on Computer and Information Technology), 5(1), 75–82. https://doi.org/10.31294/ijcit.v5i1.7951
Roihan, A., Sunarya, P. A., & Rafika, A. S. (2020). Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper. IJCIT (Indonesian Journal on Computer and Information Technology), 5(1), 75–82. https://doi.org/10.31294/ijcit.v5i1.7951
Sumpena, J., & Kurnia H., N. (2019). Analisis Prediksi Kelulusan Siswa PKBM Paket C Dengan Metoda Algoritma Naive Bayes. Tedc, 13(2), 127–133. http://ejournal.poltektedc.ac.id/index.php/tedc/article/view/13
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 PROCEEDING OF INTERNATIONAL CONFERENCE ON EDUCATION, SOCIETY AND HUMANITY