Y. T. Samiha, “Strategi Pemanfaatan Media Air (Hidroponik) Pada Budidaya Tanaman Kangkung, Pakcoy dan Sawi Sebagai Alternatif Urban Farming,” J. Educ., vol. 06, no. 01, pp. 5835–5848, 2023.
A. Sood, P. Kumar Sarangi, A. Kumar Sahoo, L. Rani, K. Bajaj, and A. Kumar Agrawal, “AI-Driven Mustard Disease Identification: A Multiclass and Binary Classification Approach for Advanced Crop Health Monitoring,” Proc. - Int. Conf. Technol. Adv. Comput. Sci. ICTACS 2023, pp. 256–261, 2023, doi: 10.1109/ICTACS59847.2023.10390082.
M. Utami and Erwin Dwika Putra, “Deteksi Objek Kualitas Daun Sawi Menggunakan Metode HSV Color dan Color Blob,” JUSIBI (Jurnal Sist. Inf. dan Bisnis), vol. 5, no. 2, pp. 85–93, 2023, doi: 10.54650/jusibi.v5i2.518.
Sakshi, C. Sharma, S. Sharma, T. Sharma, and S. Gochhait, “Green Intelligence: A Sequential CNN Odyssey in Mustard Leaf Disease Detection,” 2024 ASU Int. Conf. Emerg. Technol. Sustain. Intell. Syst. ICETSIS 2024, no. March, pp. 877–882, 2024, doi: 10.1109/ICETSIS61505.2024.10459509.
Y. M. Abd Algani, O. J. Marquez Caro, L. M. Robladillo Bravo, C. Kaur, M. S. Al Ansari, and B. Kiran Bala, “Leaf disease identification and classification using optimized deep learning,” Meas. Sensors, vol. 25, no. September 2022, p. 100643, 2023, doi: 10.1016/j.measen.2022.100643.
M. T. A. Syech Ahmad and B. Sugiarto, “Implementasi Convolutional Neural Network (CNN) untuk Klasifikasi Ikan Cupang Berbasis Mobile,” Digit. Transform. Technol., vol. 3, no. 2, pp. 712–723, 2023, doi: 10.47709/digitech.v3i2.3245.
C. L. Nazalia, P. Palupiningsih, B. Prayitno, and Y. S. Purwanto, “Implementation of Convolutional Neural Network Algorithm to Pest Detection in Caisim,” ICCoSITE 2023 - Int. Conf. Comput. Sci. Inf. Technol. Eng. Digit. Transform. Strateg. Facing VUCA TUNA Era, pp. 609–614, 2023, doi: 10.1109/ICCoSITE57641.2023.10127792.
C. L. Srinidhi, O. Ciga, and A. L. Martel, “Deep neural network models for computational histopathology: A survey,” Med. Image Anal., vol. 67, p. 101813, 2021, doi: 10.1016/j.media.2020.101813.
L. Trihardianingsih, A. Sunyoto, and T. Hidayat, “Classification of Tea Leaf Diseases Based on ResNet-50 and Inception V3,” Sinkron, vol. 8, no. 3, pp. 1564–1573, 2023, doi: 10.33395/sinkron.v8i3.12604.
A. Mehrish, N. Majumder, R. Bharadwaj, R. Mihalcea, and S. Poria, A review of deep learning techniques for speech processing, vol. 99. 2023. doi: 10.1016/j.inffus.2023.101869.
W. Bian, “Real-Fake Face Detection Based on Joint Multi-Layer CNN Structure and Data Augmentation,” no. Daml 2023, pp. 25–29, 2024, doi: 10.5220/0012800300003885.
J. A. AYENI, “Convolutional Neural Network (CNN): The architecture and applications,” Appl. J. Phys. Sci., vol. 4, no. 4, pp. 42–50, 2022, doi: 10.31248/ajps2022.085.
A. Mumuni and F. Mumuni, “Data augmentation: A comprehensive survey of modern approaches,” Array, vol. 16, no. November, p. 100258, 2022, doi: 10.1016/j.array.2022.100258.
S. M. Hassan and A. K. Maji, “Plant Disease Identification Using a Novel Convolutional Neural Network,” IEEE Access, vol. 10, pp. 5390–5401, 2022, doi: 10.1109/ACCESS.2022.3141371.
J. Kotwal, D. R. Kashyap, and D. S. Pathan, “Agricultural plant diseases identification: From traditional approach to deep learning,” Mater. Today Proc., vol. 80, no. March, pp. 344–356, 2023, doi: 10.1016/j.matpr.2023.02.370.