Lighting System Control for Cataract Maturity Imaging Device
AbstractAs technology advances, various innovations have been made to assist in diagnosing and treating cataracts. In cataract detection, artificial intelligence-based methods such as Convolutional Neural Networks (CNN) have proven very effective in detecting cataracts. CNN can classify eyes with an accuracy of up to 87%. In addition to image processing techniques such as CNN, the quality of the resulting images highly depends on the lighting system used during the eye image capture. This research expects the lighting system to be designed to adjust light intensity flexibly. This feature allows for adjusting brightness as needed, ensuring high-quality image results without compromising eye health. From this research, the image quality test results show good quality in the duty cycle range of 23.53% to 62.75% with light intensity of 30-84 lux. This indicates that the light intensity at the medium level produces images with good indicators. However, the light intensity conditions at the medium level begin to vary in terms of visual comfort and are still tolerable by most users. In the final test, an experiment involving respondents and image analysis using image processing was conducted. From the experiment, the respondents felt comfortable with the light intensity emitted by the LED. In the image processing section, the average number of images taken to obtain a good indicator was 3 times. A structured lighting system can ensure that good image results are obtained and patients feel comfortable with the light intensity used.
|
Keywords
Full Text:
References
Muhammad Nur Ihsan Muhlashin and A. Stefanie, “Klasifikasi Penyakit Mata Berdasarkan Citra Fundus Menggunakan YOLO V8,” jati, vol. 7, no. 2, pp. 1363–1368, Sep. 2023, doi: 10.36040/jati.v7i2.6927.
Made Selly Dwilestari Putri, Moch. Iwan Kurniawan, Hikmah Hiromi Razak Datu, Sri Irmandha Kusumawardhani, and Azizah Anoez, “Gambaran Visus Pasien Katarak Post Operatif di RS. Bhayangkara Tahun September 2019 – Januari 2022,” fmj, vol. 4, no. 1, pp. 29–37, Mar. 2024, doi: 10.33096/fmj.v4i1.319.
F. Ramadhani, A. Satria, and S. Salamah, “Implementasi Algoritma Convolutional Neural Network dalam Mengidentifikasi Dini Penyakit pada Mata Katarak,” sudo j. Teknik inform., vol. 2, no. 4, pp. 167–175, Dec. 2023, doi: 10.56211/sudo.v2i4.408.
G. J. Bu’ulölö, A. Jacobus, and F. D. Kambey, “Identification of Cataract Eye Disease Image Using Convolutional Neural Network”.
D. Marcella, Y. Yohannes, and S. Devella, “Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network Dengan Arsitektur VGG-19,” algoritme, vol. 3, no. 1, pp. 60–70, Oct. 2022, doi: 10.35957/algoritme.v3i1.3331.
Mochammad Toyib, Tegar Decky Kurniawan Pratama, and Ibnu Aqil, “Penerapan Algoritma CNN Untuk Mendeteksi Tulisan Tangan Angka Romawi dengan Augmentasi Data,” Algoritma, vol. 2, no. 3, pp. 108–120, May 2024, doi: 10.62383/algoritma.v2i3.69.
S. A. Maulana, S. H. Batubara, T. A. Amelia, and P. P. Pasaribu, “Penerapan Metode CNN (Convolutional Neural Network) Dalam Mengklasifikasi Jenis Ubur-Ubur”.
D. R. M. Syahputra and I. S. Faradisa, “Pengembangan Alat Identifikasi Maturitas Katarak Berbasis Raspberry Pi Dengan Adam Optimizer Untuk Proses Pelatihan Model CNN”.
Y. J. Krisnawan and W. Setiawan, “Implementasi Convolutional Neural Network (CNN) untuk Deteksi Katarak pada Citra Mata,” JEMSI, vol. 6, no. 1, pp. 443–450, Oct. 2024, doi: 10.38035/jemsi.v6i1.3066.
J. Patra, “ANALISIS PENCAHAYAAN ALAMI DAN BUATAN PADA RUANG KANTOR TERHADAP KENYAMANAN VISUAL PENGGUNA”.
D. Rahmayanti and A. Artha, “Analisis Bahaya Fisik: Hubungan Tingkat Pencahayaan dan Keluhan Mata Pekerja pada Area Perkantoran Health, Safety, and Environmental (HSE) PT. Pertamina RU VI Balongan,” j.optim.sist.ind., vol. 14, no. 1, p. 71, Apr. 2016, doi: 10.25077/josi.v14.n1.p71-98.2015.
M. S. Purba, “Perancangan Sistem Identifikasi Biometrik Iris Mata Menggunakan Metode Transformasi Hough,” vol. 7, no. 2, 2020.
P. Astuti and H. Masdi, “Sistem Kendali Kecepatan Motor BLDC Menggunakan PWM Berbasis Mikrokontroler Arduino Uno,” JTEIN, vol. 3, no. 1, pp. 120–135, Jan. 2022, doi: 10.24036/jtein.v3i1.216.
D. Dewatama, M. Fauziyah, and N. K. Jannah, “Sistem Pengaturan Pencahayaan pada Budidaya Jamur Tiram Berbasis Arduino Uno Dengan Metode Fuzzy Logic,” protk, vol. 9, no. 2, p. 99, Sep. 2022, doi: 10.33387/protk.v9i2.4319.
S. G. Gunawan, “Pewarnaan Citra Grayscale dengan Histogram Specification
10.33650/jeecom.v7i1.10849 |
|
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Katon Bagus Setiawan, I Komang Somawirata, Irmalia Suryani Faradisa

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.