Design and Construction of Maternal and Infant Mortality Rate Mapping Using the K-Means Clustering Method Based on Geographic Information Systems (Case Study in Jember Regency)

DOI: https://doi.org/10.33650/jeecom.v8i1.13911
Authors

(1) * Nilla Putri Rosidania   (Politeknik Negeri Jember)  
        Indonesia
(2)  Denny Trias Utomo   (Politeknik Negeri Jember)  
        Indonesia
(*) Corresponding Author

Abstract


Indonesia’s population continues to grow each year, including in Jember Regency, which reached 2,584,771 people in 2023. Population density contributes to various health issues, such as the high maternal mortality rate (MMR) and infant mortality rate (IMR), with 17 maternal deaths and 81 infant deaths recorded in 2023. The primary causes of MMR include pregnancy at too young or old an age, short birth spacing, and delays in referral, while IMR is mainly caused by asphyxia and low birth weight (LBW) due to premature birth. The government has implemented a midwife and traditional birth attendant partnership program to address this issue. However, information regarding high-risk areas remains inadequately conveyed. Therefore, this study develops a Geographic Information System (GIS)-based system using the K-Means Clustering method with a predefined number of clusters to classify high-risk maternal and infant mortality areas. The results show that the K-Means Clustering method with a fixed number of clusters (k = 5) successfully groups Jember Regency into five risk-level clusters, namely very high, high, medium, low, and very low. Visualization through GIS facilitates effective access to spatial information and supports the identification of priority areas for targeted health interventions, aiming to reduce maternal and infant mortality rates more effectively.


Keywords

Stunting, K-Means, Geographic Information System



Full Text: PDF



References


‘Maternal mortality’. Accessed: May 22, 2024. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/maternal-mortality

J. Paramita and J. Nadhila, ‘IMPLEMENTASI PROGRAM ANC (ANTENATAL CARE) SEBAGAI UPAYA MENURUNKAN AKI (ANGKA KEMATIAN IBU) DAN AKB (ANGKA KEMATIAN BAYI) DI INDONESIA’, Apr. 2023.

Z. Arifin, ‘Implementasi pelayanan kesehatan dalam penurunan angka kematian ibu’, Jurnal Penelitian Kesehatan" SUARA FORIKES"(Journal of Health Research" Forikes Voice"), vol. 14, no. 1, pp. 6–10, 2023.

I. P. Sari et al., ‘FAKTOR PENYEBAB ANGKA KEMATIAN IBU DAN ANGKA KEMATIAN BAYI SERTA STRATEGI PENURUNAN KASUS (STUDI KASUS DI NEGARA BERKEMBANG)’, vol. 7, 2023.

K. Ummah and A. Rosyaria, ‘Pemanfaatan Teknologi Tepat Guna (KMS) sebagai Media Peningkatan Keterampilan Dukun Sebagai Mitra Bidan di Posyandu Anyelir Tanah Merah Kabupaten Bangkalan’, Proceedings Series on Health & Medical Sciences, vol. 4, pp. 48–51, Jan. 2023, doi: 10.30595/pshms.v4i.553.

S. Oruh, ‘Literatur Review: Kebijakan dan Strategi Pemberdayaan Masyarakat Dalam Menurunkan Angka Kematian Ibu dan Bayi’, Jurnal Kesehatan Masyarakat, vol. 12, pp. 135–148, Jun. 2021, doi: 10.22487/preventif.v12i1.297.

W. Isdarmawan and A. Nilogiri, ‘PENGELOMPOKAN PUSKESMAS BERDASARKAN INDIKATOR JUMLAH KEMATIAN IBU DAN BAYI MENGGUNAKAN METODE K-MEDOIDS (STUDI KASUS KABUPATEN JEMBER)’, 2020.

B. H. Prakoso, E. Rachmawati, D. R. P. Mudiono, V. Vestine, and G. E. J. Suyoso, ‘Klasterisasi Puskesmas dengan K-Means Berdasarkan Data Kualitas Kesehatan Keluarga dan Gizi Masyarakat’, JBI, vol. 14, no. 01, pp. 60–68, Apr. 2023, doi: 10.24002/jbi.v14i01.7105.

Y. B. Utomo, I. Kurniasari, and I. Yanuartanti, ‘PENERAPAN KNOWLEDGE DISCOVERY IN DATABASE UNTUK ANALISA TINGKAT KECELAKAAN LALU LINTAS’, JTIK, vol. 7, no. 1, pp. 171–180, Jan. 2023, doi: 10.59697/jtik.v7i1.61.

D. Heksaputra, M. J. U. H. Bahrudin, and F. S. Fatimah, ‘Analisis Persebaran Angka Kematian Ibu Hamil Berbasis WEB-GIS Menggunakan Metode Fuzzy Multiple Criteria Decision Making (FMCDM) di Daerah Yogyakarta’, IJUBI, vol. 3, no. 2, p. 54, Jan. 2021, doi: 10.21927/ijubi.v3i2.1504.

S. T. Atmoko, D. Winarti, and E. Yandani, ‘Pengembangan Sistem Informasi Geografis untuk Visualisasi Spasial dan Pemantauan Interaktif Kasus Stunting di Kabupaten Dharmasraya Berbasis Website’, JEKIN - Jurnal Teknik Informatika, vol. 5, no. 2, pp. 960–970, Aug. 2025, doi: 10.58794/jekin.v5i2.1606.

R. A. Indraputra and R. Fitriana, ‘K-Means Clustering Data COVID-19’, j. teknik industri, vol. 10, no. 3, pp. 275–282, Dec. 2020, doi: 10.25105/jti.v10i3.8428.

A. Supriyadi, A. Triayudi, and I. D. Sholihati, ‘PERBANDINGAN ALGORITMA K-MEANS DENGAN K-MEDOIDS PADA PENGELOMPOKAN ARMADA KENDARAAN TRUK BERDASARKAN PRODUKTIVITAS’, vol. 06, 2021.

I. Budiman, S. Saori, R. N. Anwar, F. Fitriani, and M. Y. Pangestu, ‘Analisis Pengendalian Mutu Di Bidang Industri Makanan (Studi Kasus: Umkm Mochi Kaswari Lampion Kota Sukabumi)’, Jurnal Inovasi Penelitian, vol. 1, no. 10, pp. 2185–2190, 2021.

I. P. Putra, N. Neneng, and D. A. Megawaty, ‘Sistem Informasi Geografis Untuk Pemetaan Jalur Evakuasi Bencana Tsunami Di Desa Way Muli Kabupaten Lampung Selatan’, Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 4, no. 1, Art. no. 1, Mar. 2023, doi: 10.33365/jatika.v4i1.2467.


Dimensions, PlumX, and Google Scholar Metrics

10.33650/jeecom.v8i1.13911


Refbacks

  • There are currently no refbacks.


Copyright (c) 2026 Denny Trias Utomo

 
This work is licensed under a Creative Commons Attribution License (CC BY-SA 4.0)

Journal of Electrical Engineering and Computer (JEECOM)
Published by LP3M Nurul Jadid University, Indonesia, Probolinggo, East Java, Indonesia.