Pengaruh Jenis Stemmer Terhadap Algoritma Svm Pada Analisis Sentimen Berbasis Lexicon Dengan Afinn Lexicon Resource

Luthfi Nurul Huda, Andi Sunyoto, Kusnawi Kusnawi
DOI: https://doi.org/10.33650/jeecom.v6i1.8227



Abstract

Analisis sentimen merupakan bidang ilmu yang memiliki potensi besar dalam penelitian dan aplikasi praktis. Ini merupakan sebuah tugas dari NLP yang dieksploitasi untuk mengekstraksi dan mengklasifikasi konten berdasarkan sentimen emosi baik positive, negative dan netral. Analisis sentimen sendiri dibagi menjadi tiga teknik: teknik berbasis leksikon (lexicon-based), teknik berbasis machine learning (machine learning-based), dan teknik hybrid-based. Penelitian ini mengangkat teknik hybrid-based. Penelitian ini befokus untuk menemukan jenis stemmer yang dapat meningkatkan performa dari algoritma SVM pada analisis sentimen berbasis lexicon. Penelitian ini menerapkan tiga jenis stemmer yang berbeda yakni porter stemmer, snowball stemmer, dan Lancaster stemmer. Kemudian menggunakan AFINN lexicon dictionary. Terakhir algoritma SVM akan dievaluasi menggunakan confusion matrix. Penelitian ini melakukan tiga skenario, yakni gabungan antara jenis stemmer yang digunakan dengan algoritma SVM. Dari ketiga skenario yang dilakukan, gabungan SVM dan Snowball stemmer mendapatkan nilai Accuracy, Precision, Recall dan F1-Score paling tinggi dari dua skenario lainnya. Yakni dengan nilai Accuracy sebesar 95,67 %, Precision sebesar 95,68 %, Recall sebesar 95,67 % dan F1-Score sebesar 95,67 %.


Keywords

Analisis sentimen,Lexicon based, Preprocessing, Stemming, SVM,

Full Text:

PDF

References

K. X. Han, W. Chien, C. C. Chiu, and Y. T. Cheng, “Application of support vector machine (SVM) in the sentiment analysis of twitter dataset,” Appl. Sci., vol. 10, no. 3, 2020, doi: 10.3390/app10031125.

V. Nurcahyawati and Z. Mustaffa, “Improving sentiment reviews classification performance using support vector machine-fuzzy matching algorithm,” Bull. Electr. Eng. Informatics, vol. 12, no. 3, pp. 1817–1824, 2023, doi: 10.11591/eei.v12i3.4830.

K. Tamara and N. Milićević, “Comparing Sentiment Analysis and Document Representation Methods of Amazon Reviews,” SISY 2018 - IEEE 16th Int. Symp. Intell. Syst. Informatics, Proc., pp. 283–288, 2018, doi: 10.1109/SISY.2018.8524814.

H. Zou, X. Tang, B. Xie, and B. Liu, “Sentiment classification using machine learning techniques with syntax features,” Proc. - 2015 Int. Conf. Comput. Sci. Comput. Intell. CSCI 2015, pp. 175–176, 2016, doi: 10.1109/CSCI.2015.44.

D. Dangi, A. Bhagat, and D. K. Dixit, “Sentiment analysis of social media data based on chaotic coyote optimization algorithm based time weight-AdaBoost support vector machine approach,” Concurrency and Computation: Practice and Experience, vol. 34, no. 3. 2022. doi: 10.1002/cpe.6581.

A. Muhammad, S. Abdullah, and N. S. Sani, “Optimization of sentiment analysis using teaching-learning based algorithm,” Comput. Mater. Contin., vol. 69, no. 2, pp. 1783–1799, 2021, doi: 10.32604/cmc.2021.018593.

C. Shofiya and S. Abidi, “Sentiment analysis on covid-19-related social distancing in Canada using twitter data,” Int. J. Environ. Res. Public Health, vol. 18, no. 11, 2021, doi: 10.3390/ijerph18115993.

F. Resyanto, Y. Sibaroni, and A. Romadhony, “Choosing The Most Optimum Text Preprocessing Method for Sentiment Analysis: Case:iPhone Tweets,” Proc. 2019 4th Int. Conf. Informatics Comput. ICIC 2019, pp. 2–6, 2019, doi: 10.1109/ICIC47613.2019.8985943.

S. Rani, N. Singh Gill, and P. Gulia, “Analyzing impact of number of features on efficiency of hybrid model of lexicon and stack based ensemble classifier for twitter sentiment analysis using WEKA tool,” Indones. J. Electr. Eng. Comput. Sci., vol. 22, no. 2, p. 1041, 2021, doi: 10.11591/ijeecs.v22.i2.pp1041-1051.

Y. Handayani, A. R. Hakim, and Muljono, “Sentiment analysis of Bank BNI user comments using the support vector machine method,” Proc. - 2020 Int. Semin. Appl. Technol. Inf. Commun. IT Challenges Sustain. Scalability, Secur. Age Digit. Disruption, iSemantic 2020, pp. 202–207, 2020, doi: 10.1109/iSemantic50169.2020.9234230.

B. AlBadani, R. Shi, and J. Dong, “A Novel Machine Learning Approach for Sentiment Analysis on Twitter Incorporating the Universal Language Model Fine-Tuning and SVM,” Appl. Syst. Innov., vol. 5, no. 1, 2022, doi: 10.3390/asi5010013.

N. V. Babu and E. G. M. Kanaga, “Sentiment Analysis in Social Media Data for Depression Detection Using Artificial Intelligence: A Review,” SN Comput. Sci., vol. 3, no. 1, pp. 1–20, 2022, doi: 10.1007/s42979-021-00958-1.

B. T. Pratama, E. Utami, and A. Sunyoto, “An optimization of a lexicon based sentiment analysis method on Indonesian app review,” 2019 4th Int. Conf. Inf. Technol. Inf. Syst. Electr. Eng. ICITISEE 2019, pp. 341–346, 2019, doi: 10.1109/ICITISEE48480.2019.9003900.

B. T. Pratama, E. Utami, and A. Sunyoto, “A comparison of the use of several different resources on lexicon based Indonesian sentiment analysis on app review dataset,” Proceeding - 2019 Int. Conf. Artif. Intell. Inf. Technol. ICAIIT 2019, pp. 282–287, 2019, doi: 10.1109/ICAIIT.2019.8834531.

Y. Barve, J. R. Saini, K. Pal, and K. Kotecha, “A Novel Evolving Sentimental Bag-of-Words Approach for Feature Extraction to Detect Misinformation,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 4, pp. 266–275, 2022, doi: 10.14569/IJACSA.2022.0130431.

P. Verma, A. Dumka, A. Bhardwaj, and A. Ashok, “Product Review-Based Customer Sentiment Analysis Using an Ensemble of mRMR and Forest Optimization Algorithm (FOA),” Int. J. Appl. Metaheuristic Comput., vol. 13, no. 1, pp. 1–21, 2022, doi: 10.4018/ijamc.2022010107.

M. B. Ressan and R. F. Hassan, “Naïve-Bayes family for sentiment analysis during COVID-19 pandemic and classification tweets,” Indones. J. Electr. Eng. Comput. Sci., vol. 28, no. 1, pp. 375–383, 2022, doi: 10.11591/ijeecs.v28.i1.pp375-383.

F. Rustam, I. Ashraf, A. Mehmood, S. Ullah, and G. S. Choi, “Tweets classification on the base of sentiments for US airline companies,” Entropy, vol. 21, no. 11, pp. 1–22, 2019, doi: 10.3390/e21111078.

C. H. Yutika, A. Adiwijaya, and S. Al Faraby, “Analisis Sentimen Berbasis Aspek pada Review Female Daily Menggunakan TF-IDF dan Naïve Bayes,” J. Media Inform. Budidarma, vol. 5, no. 2, p. 422, 2021, doi: 10.30865/mib.v5i2.2845.

R. Obiedat et al., “Sentiment Analysis of Customers’ Reviews Using a Hybrid Evolutionary SVM-Based Approach in an Imbalanced Data Distribution,” IEEE Access, vol. 10, pp. 22260–22273, 2022, doi: 10.1109/ACCESS.2022.3149482.

P. H. Prastyo, A. S. Sumi, A. W. Dian, and A. E. Permanasari, “Tweets Responding to the Indonesian Government’s Handling of COVID-19: Sentiment Analysis Using SVM with Normalized Poly Kernel,” J. Inf. Syst. Eng. Bus. Intell., vol. 6, no. 2, p. 112, 2020, doi: 10.20473/jisebi.6.2.112-122.


Dimensions, PlumX, and Google Scholar Metrics

10.33650/jeecom.v6i1.8227


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Luthfi Nurul Huda

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License
 
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Journal of Electrical Engineering and Computer (JEECOM)
Published by LP3M Nurul Jadid University, Indonesia, Probolinggo, East Java, Indonesia.