Planning of Solar Power Plant SMA LabSchool UPGRIS with PV*SOL

Adhi - Kusmantoro
DOI: https://doi.org/10.33650/jeecom.v7i1.8543



Abstract

The increase in the use of electrical energy is increasing in the development of technology at this time. At present in Indonesia, power plants still use non-renewable energy sources that will eventually run out. The purpose of this study is to provide a source of electricity with solar energy sources, so that dependence on PLN electricity can be reduced. The method used is planning and simulating using PV*SOL software. The planned location for the installation of Solar Power Plant (SPP) is in the Gayamsari District, Semarang City, Central Java. The location of the SMA Building has an area of 1773 m2 with coordinates of Latitude -6.9830564° N, 110.4494686 ° E. In the planning, the stages are determining the location of the PLTS, identifying solar radiation intensity data, identifying electrical load data, determining solar panel capacity, determining battery capacity, determining inverter capacity, and determining the capacity of the Solar Charge Controller (SCC). The planned SPP operates in an off-grid system. In carrying out this planning with stages. The results of the study showed that the amount of daily electricity consumption was 18,402 Wh and the electricity consumption for one month was 552,060 Wh. The simulation showed that solar panels effectively produced an average of 1300 kWh of electricity. The production of large solar panels occurred from April to October, with an average energy of 130 kWh. The results of the study showed that the amount of electricity consumption was large but could be served by solar power plants.


Keywords

Panel Surya, Baterai, Inverter, Solar Charge Controller, Energi Matahari

Full Text:

PDF

References

B. G. Bhang, J. H. Hyun, S. H. Ahn, J. H. Choi, G. G. Kim, and H. K. Ahn, “Optimal Design of Bifacial Floating Photovoltaic System With Different Installation Azimuths,” IEEE Access, vol. 11, no. January, pp. 1456–1466, 2023, doi: 10.1109/ACCESS.2022.3233100.

D. P. Winston, “Design of sustainable PV module for efficient power generation during faults,” IEEE Trans. Components, Packag. Manuf. Technol., vol. 10, no. 3, pp. 389–392, 2020, doi: 10.1109/TCPMT.2020.2973028.

S. Vinco, D. J. Pagliari, L. Bottaccioli, E. Patti, E. MacIi, and M. Poncino, “A Microservices-Based Framework for Smart Design and Optimization of PV Installations,” IEEE Trans. Sustain. Comput., vol. 6, no. 4, pp. 531–543, 2021, doi: 10.1109/TSUSC.2020.3010673.

C. Y. Liao, W. S. Lin, Y. M. Chen, and C. Y. Chou, “A PV Micro-inverter with PV Current Decoupling Strategy,” IEEE Trans. Power Electron., vol. 32, no. 8, pp. 6544–6557, 2017, doi: 10.1109/TPEL.2016.2616371.

T. E. K. Zidane et al., “Identifiability Evaluation of Crucial Parameters for Grid Connected Photovoltaic Power Plants Design Optimization,” IEEE Access, vol. 9, pp. 108754–108771, 2021, doi: 10.1109/ACCESS.2021.3102159.

E. Koutroulis, Y. Yang, and F. Blaabjerg, “Co-Design of the pvarray and dc/ac inverter for maximizing the energy production in grid-connected applications,” IEEE Trans. Energy Convers., vol. 34, no. 1, pp. 509–519, 2019, doi: 10.1109/TEC.2018.2879219.

H. Oufettoul, N. Lamdihine, S. Motahhir, N. Lamrini, I. A. Abdelmoula, and G. Aniba, “Comparative Performance Analysis of PV Module Positions in a Solar PV Array Under Partial Shading Conditions,” IEEE Access, vol. 11, no. January 2023, pp. 12176–12194, 2023, doi: 10.1109/ACCESS.2023.3237250.

M. G. Kashani, M. Mobarrez, and S. Bhattacharya, “Smart Inverter Volt-Watt Control Design in High PV-Penetrated Distribution Systems,” IEEE Trans. Ind. Appl., vol. 55, no. 2, pp. 1147–1156, 2019, doi: 10.1109/TIA.2018.2878844.

D. Cheng, B. Mather, R. Seguin, J. Hambrick, and R. P. Broadwater, “PV impact assessment for very high penetration levels,” 2015 IEEE 42nd Photovolt. Spec. Conf. PVSC 2015, pp. 1–6, 2015, doi: 10.1109/PVSC.2015.7356170.

O. M. Akeyo, V. Rallabandi, N. Jewell, and D. M. Ionel, “The Design and Analysis of Large Solar PV Farm Configurations with DC-Connected Battery Systems,” IEEE Trans. Ind. Appl., vol. 56, no. 3, pp. 2903–2912, 2020, doi: 10.1109/TIA.2020.2969102.

R. D. J. Kartika Sari and A. Murdianto, “Perencanaan Pembangkit Listrik Tenaga Surya Skala Industri Berbasis PVsyst,” JEECOM J. Electr. Eng. Comput., vol. 5, no. 2, pp. 171–179, 2023, doi: 10.33650/jeecom.v5i2.6645.

A. Kusmantoro, Ardyono Priyadi, Vita Lystianingrum Budiharto Putri, and Mauridhi Hery Purnomo, “Kinerja Micro Grid Menggunakan Photovoltaic-Baterai dengan Sistem Off-Grid,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 9, no. 2, pp. 211–217, 2020, doi: 10.22146/jnteti.v9i2.155.

Adhi Kusmantoro and Ardyono Priyadi, “Strategi Peningkatan Kinerja DC Microgrid dengan Konfigurasi DC/AC Coupling,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 12, no. 3, pp. 175–180, 2023, doi: 10.22146/jnteti.v12i3.7151.

S. Budi, M. Akrom, G. A. Trisnapradika, T. Sutojo, and W. A. E. Prabowo, “Optimization of Polynomial Functions on the NuSVR Algorithm Based on Machine Learning: Case Studies on Regression Datasets,” Sci. J. Informatics, vol. 10, no. 2, pp. 151–158, 2023, doi: 10.15294/sji.v10i2.43929.

A. Kusmantoro and I. Farikhah, “Real-Time Microgrid Centralized Control For Consuming Water Pump,” E3S Web Conf., vol. 465, 2023, doi: 10.1051/e3sconf/202346502003.

A. Kusmantoro and M. Margono, “Peningkatan Kinerja MPPT Menggunakan Kontrol PWM Fuzzy dengan Tuning PID,” J. Rekayasa Elektr., vol. 16, no. 2, pp. 80–86, 2020, doi: 10.17529/jre.v16i2.16220.

A. Kusmantoro, A. Priyadi, V. L. Budiharto Putri, and M. Hery Purnomo, “Coordinated Control of Battery Energy Storage System Based on Fuzzy Logic for Microgrid with Modified AC Coupling Configuration,” Int. J. Intell. Eng. Syst., vol. 14, no. 2, pp. 495–510, 2021, doi: 10.22266/ijies2021.0430.45.

A. Kusmantoro and I. Farikhah, “Solar power and multi-battery for new configuration DC microgrid using centralized control,” Arch. Electr. Eng., vol. 72, no. 4, pp. 931–950, 2023, doi: 10.24425/aee.2023.147419.

P. Cicilio, M. Orosz, A. Mueller, and E. Cotilla-Sanchez, “UGrid: Reliable Minigrid Design and Planning Toolset for Rural Electrification,” IEEE Access, vol. 7, no. iii, pp. 163988–163999, 2019, doi: 10.1109/ACCESS.2019.2952896.

M. Nasir, H. A. Khan, A. Hussain, L. Mateen, and N. A. Zaffar, “Solar PV-based scalable DC microgrid for rural electrification in developing regions,” IEEE Trans. Sustain. Energy, vol. 9, no. 1, pp. 390–399, 2018, doi: 10.1109/TSTE.2017.2736160.

H. U. R. Habib et al., “Optimal planning and EMS design of PV based standalone rural microgrids,” IEEE Access, vol. 9, pp. 32908–32930, 2021, doi: 10.1109/ACCESS.2021.3060031.


Dimensions, PlumX, and Google Scholar Metrics

10.33650/jeecom.v7i1.8543


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Adhi - Kusmantoro

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License
 
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Journal of Electrical Engineering and Computer (JEECOM)
Published by LP3M Nurul Jadid University, Indonesia, Probolinggo, East Java, Indonesia.