Klasifikasi Penyakit Pada Daun Cabai Menggunakan Arsitektur VGG16

Ahmad Sanusi Mashuri, Andi Sunyoto, Kusnawi Kusnawi
DOI: https://doi.org/10.33650/jeecom.v6i2.9116



Abstract

Penyakit pada tanaman cabai dapat mengancam produktivitas dan kualitas hasil panen jika tidak terdeteksi dan diatasi secara tepat waktu. Untuk meningkatkan deteksi dini penyakit pada tanaman cabai, kami mengembangkan sistem klasifikasi menggunakan arsitektur VGG16, sebuah jaringan saraf konvolusional yang telah terbukti efektif dalam pengolahan gambar kompleks. Penelitian ini memanfaatkan dataset citra daun cabai yang terdiri dari beberapa kelas penyakit yang umum dijumpai, termasuk Healthy, Yellowish, whitefly, leafcurl dan leafspot. Citra-citra ini diolah dan dinormalisasi untuk pelatihan dan pengujian model. Arsitektur VGG16 digunakan sebagai model dasar, yang telah dipre-trained pada dataset ImageNet untuk meningkatkan kinerja klasifikasi. Proses pelatihan model dilakukan dengan memanfaatkan teknik transfer learning, di mana lapisan-lapisan akhir dari VGG16 disesuaikan dengan dataset penyakit daun cabai. Selama pengujian, sistem berhasil mengenali dan mengklasifikasikan penyakit pada daun cabai dengan tingkat akurasi yang tinggi. Hasil evaluasi menunjukkan bahwa arsitektur VGG16 mampu mengenali berbagai penyakit dengan akurasi rata-rata sebesar 0.9962%. sedangkan waktu komputasi yang dibutukan adalah 7 detik.


Full Text:

PDF

References

K. Sebastian, M. S. Arya, U. R. Reshma, S. J. Anaswara, and S. S. Thampi, “Impact of Plant Growth Regulators on Fruit Production,” Int. J. Curr. Microbiol. Appl. Sci., vol. 8, no. 02, pp. 800–814, 2019, doi: 10.20546/ijcmas.2019.802.092.

V. P. Semenov, L. Y. Baranova, and T. S. Yagya, “Application of Artificial Intelligence in Medicine,” Proc. 2022 25th Int. Conf. Soft Comput. Meas. SCM 2022, vol. 41, no. 6, pp. 262–265, 2022, doi: 10.1109/SCM55405.2022.9794891.

H. Salman, J. Grover, and T. Shankar, “Hierarchical Reinforcement Learning for Sequencing Behaviors,” vol. 2733, no. March, pp. 2709–2733, 2018, doi: 10.1162/NECO.

S. Zhang, W. Huang, and C. Zhang, “Three-channel convolutional neural networks for vegetable leaf disease recognition,” Cogn. Syst. Res., vol. 53, pp. 31–41, 2019, doi: 10.1016/j.cogsys.2018.04.006.

L. Li, S. Zhang, and B. Wang, “Plant Disease Detection and Classification by Deep Learning - A Review,” IEEE Access, vol. 9, no. Ccv, pp. 56683–56698, 2021, doi: 10.1109/ACCESS.2021.3069646.

A. Kamilaris and F. X. Prenafeta-Boldú, “Deep learning in agriculture: A survey,” Comput. Electron. Agric., vol. 147, no. July 2017, pp. 70–90, 2018, doi: 10.1016/j.compag.2018.02.016.

D. Varshni, K. Thakral, L. Agarwal, R. Nijhawan, and A. Mittal, “Pneumonia Detection Using CNN based Feature Extraction,” Proc. 2019 3rd IEEE Int. Conf. Electr. Comput. Commun. Technol. ICECCT 2019, pp. 1–7, 2019, doi: 10.1109/ICECCT.2019.8869364.

Z. Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows,” Proc. IEEE Int. Conf. Comput. Vis., pp. 9992–10002, 2021, doi: 10.1109/ICCV48922.2021.00986.

S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for deep neural networks,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 5987–5995, 2017, doi: 10.1109/CVPR.2017.634.

P. A. Nugroho, I. Fenriana, and R. Arijanto, “Implementasi Deep Learning Menggunakan Convolutional Neural Network (CNN) Pada Ekspresi Manusia,” Algor, vol. 2, no. 1, pp. 12–21, 2020.

T. Zhou, S. Ruan, and S. Canu, “A review: Deep learning for medical image segmentation using multi-modality fusion,” Array, vol. 3–4, 2019, doi: 10.1016/j.array.2019.100004.

H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou, “Training data-efficient image transformers & distillation through attention,” Proc. Mach. Learn. Res., vol. 139, pp. 10347–10357, 2021.

V. Atliha and D. Sesok, “Comparison of VGG and ResNet used as Encoders for Image Captioning,” 2020 IEEE Open Conf. Electr. Electron. Inf. Sci. eStream 2020 - Proc., pp. 1–4, 2020, doi: 10.1109/eStream50540.2020.9108880.

A. Fuentes, S. Yoon, S. C. Kim, and D. S. Park, “A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition,” Sensors (Switzerland), vol. 17, no. 9, 2017, doi: 10.3390/s17092022.

E. C. Too, L. Yujian, S. Njuki, and L. Yingchun, “A comparative study of fine-tuning deep learning models for plant disease identification,” Comput. Electron. Agric., vol. 161, no. October 2017, pp. 272–279, 2019, doi: 10.1016/j.compag.2018.03.032.


Dimensions, PlumX, and Google Scholar Metrics

10.33650/jeecom.v6i2.9116


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Ahmad Sanusi Mashuri

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License
 
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Journal of Electrical Engineering and Computer (JEECOM)
Published by LP3M Nurul Jadid University, Indonesia, Probolinggo, East Java, Indonesia.