Klasifikasi Hama Pada Daun Sawi Menggunakan Convolutional Neural Network (CNN) Dengan Algoritma Xcaption dan Optimasi Adam
AbstractSawi (Brassica rapa) adalah sayuran yang populer di Indonesia, namun serangan hama sering kali menghambat produktivitasnya, mengurangi kualitas dan kuantitas panen. Identifikasi hama secara akurat sangat penting untuk pengendalian yang efektif, namun metode konvensional yang melibatkan pengamatan visual sering kali kurang efisien dan rentan terhadap kesalahan manusia. Oleh karena itu, penelitian ini memanfaatkan teknologi terbaru dalam pemrosesan citra dan machine learning untuk meningkatkan akurasi dan efisiensi dalam identifikasi hama pada daun sawi. Convolutional Neural Network (CNN) dengan arsitektur Xception yang dioptimalkan menggunakan algoritma Adam dipilih sebagai metode utama untuk klasifikasi hama daun sawi. Penelitian ini menggunakan dataset gambar daun sawi dari situs publik kaggle, dengan preprocessing yang dilakukan untuk memastikan kualitas dan konsistensi data. Setelah melalui proses augmentasi data dan pelatihan model, model CNN dilatih dengan ukuran batch 64, epoch 100, dan dropout 0,5. Evaluasi menggunakan confusion matrix menunjukkan akurasi pelatihan dan validasi mencapai 99,00%. Hasil menunjukkan bahwa model CNN yang dikembangkan berhasil mencapai akurasi pelatihan dan validasi sebesar 99,00%. Evaluasi model menggunakan confusion matrix menunjukkan bahwa model mampu mengklasifikasikan hama daun sawi dengan akurasi yang sangat tinggi, memberikan solusi yang efisien untuk pengendalian hama di pertanian sawi. Hasil ini menunjukkan bahwa penggunaan teknologi CNN dengan optimasi yang tepat dapat secara signifikan meningkatkan kualitas dan produktivitas hasil panen.
|
Keywords
Full Text:
References
M. Sigala, A. Beer, L. Hodgson, and A. O’Connor, Big Data for Measuring the Impact of Tourism Economic Development Programmes: A Process and Quality Criteria Framework for Using Big Data. 2019.
G. Nguyen et al., ―Machine Learning and Deep Learning frameworks and libraries for large-scale data mining: a survey,‖ Artif. Intell. Rev., vol. 52, no. 1, pp. 77–124, 2019, doi: 10.1007/s10462-018-09679- z.
C. Shorten and T. M. Khoshgoftaar, ―A survey on Image Data Augmentation for Deep Learning,‖ J. Big Data, vol. 6, no. 1, 2019, doi: 10.1186/s40537-019-0197-0.
R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat, and S. Venkatraman, ―Deep Learning Approach for Intelligent Intrusion Detection System,‖ IEEE Access, vol. 7, pp. 41525– 41550, 2019, doi: 10.1109/ACCESS.2019.2895334.
K. Sivaraman, R. M. V. Krishnan, B. Sundarraj, and S. Sri Gowthem, ―Network failure detection and diagnosis by analyzing syslog and SNS data: Applying big data analysis to network operations,‖ Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 9 Special Issue 3, pp. 883–887, 2019, doi: 10.35940/ijitee.I3187.0789S319.
A. D. Dwivedi, G. Srivastava, S. Dhar, and R. Singh, ―A decentralized privacy-preserving healthcare blockchain for IoT,‖ Sensors (Switzerland), vol. 19, no. 2, pp. 1–17, 2019, doi: 10.3390/s19020326.
F. Al-Turjman, H. Zahmatkesh, and L. Mostarda, ―Quantifying uncertainty in internet of medical things
and big-data services using intelligence and deep learning,‖ IEEE Access, vol. 7, pp. 115749–115759,
, doi: 10.1109/ACCESS.2019.2931637.
S. Kumar and M. Singh, ―Big data analytics for healthcare industry: Impact, applications, and tools,‖
Big Data Min. Anal., vol. 2, no. 1, pp. 48–57, 2019, doi: 10.26599/BDMA.2018.9020031.
L. M. Ang, K. P. Seng, G. K. Ijemaru, and A. M. Zungeru, ―Deployment of IoV for Smart Cities: Applications, Architecture, and Challenges,‖ IEEE Access, vol. 7, pp. 6473–6492, 2019, doi:
1109/ACCESS.2018.2887076.
B. P. L. Lau et al., ―A survey of data fusion in smart city applications,‖ Inf. Fusion, vol. 52, no. January,
pp. 357–374, 2019, doi: 10.1016/j.inffus.2019.05.004.
Y. Wu et al., ―Large scale incremental learning,‖ Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., vol. 2019-June, pp. 374–382, 2019, doi: 10.1109/CVPR.2019.00046.
A. Mosavi, S. Shamshirband, E. Salwana, K. wing Chau, and J. H. M. Tah, ―Prediction of multi-inputs bubble column reactor using a novel hybrid model of computational fluid dynamics and machine learning,‖ Eng. Appl. Comput. Fluid Mech., vol. 13, no. 1, pp. 482–492, 2019, doi:
1080/19942060.2019.1613448.
V. Palanisamy and R. Thirunavukarasu, ―Implications of big data analytics in developing healthcare
frameworks – A review,‖ J. King Saud Univ. - Comput. Inf. Sci., vol. 31, no. 4, pp. 415–425, 2019, doi:
1016/j.jksuci.2017.12.007.
J. Sadowski, ―When data is capital: Datafication, accumulation, and extraction,‖ Big Data Soc., vol. 6,
no. 1, pp. 1–12, 2019, doi: 10.1177/2053951718820549.
J. R. Saura, B. R. Herraez, and A. Reyes-Menendez, ―Comparing a traditional approach for financial
brand communication analysis with a big data analytics technique,‖ IEEE Access, vol. 7, pp. 37100–
, 2019, doi: 10.1109/ACCESS.2019.2905301.
D. Nallaperuma et al., ―Online Incremental Machine Learning Platform for Big Data-Driven Smart
Traffic Management,‖ IEEE Trans. Intell. Transp. Syst., vol. 20, no. 12, pp. 4679–4690, 2019, doi:
1109/TITS.2019.2924883.
S. Schulz, M. Becker, M. R. Groseclose, S. Schadt, and C. Hopf, ―Advanced MALDI mass
spectrometry imaging in pharmaceutical research and drug development,‖ Curr. Opin. Biotechnol., vol. 55, pp. 51–59, 2019, doi: 10.1016/j.copbio.2018.08.003.
C. Shang and F. You, ―Data Analytics and Machine Learning for Smart Process Manufacturing: Recent Advances and Perspectives in the Big Data Era,‖ Engineering, vol. 5, no. 6, pp. 1010–1016, 2019, doi: 10.1016/j.eng.2019.01.019.
Y. Yu, M. Li, L. Liu, Y. Li, and J. Wang, ―Clinical big data and deep learning: Applications, challenges, and future outlooks,‖ Big Data Min. Anal., vol. 2, no. 4, pp. 288–305, 2019, doi: 10.26599/BDMA.2019.9020007.
M. Huang, W. Liu, T. Wang, H. Song, X. Li, and A. Liu, ―A queuing delay utilization scheme for on- path service aggregation in services-oriented computing networks,‖ IEEE Access, vol. 7, pp. 23816– 23833, 2019, doi: 10.1109/ACCESS.2019.2899402.
G. Xu, Y. Shi, X. Sun, and W. Shen, ―Internet of things in marine environment monitoring: A review,‖ Sensors (Switzerland), vol. 19, no. 7, pp. 1–21, 2019, doi: 10.3390/s19071711.
M. Aqib, R. Mehmood, A. Alzahrani, I. Katib, A. Albeshri, and S. M. Altowaijri, Smarter traffic prediction using big data, in-memory computing, deep learning and gpus, vol. 19, no. 9. 2019.
S. Leonelli and N. Tempini, Data Journeys in the Sciences. 2020.
N. Stylos and J. Zwiegelaar, Big Data as a Game Changer: How Does It Shape Business Intelligence
Within a Tourism and Hospitality Industry Context? 2019.
Q. Song, H. Ge, J. Caverlee, and X. Hu, ―Tensor completion algorithms in big data analytics,‖ arXiv,
vol. 13, no. 1, 2017.
10.33650/jeecom.v6i2.9529 |
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Saiful Bahri
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.